1,750 research outputs found

    Patellofemoral morphology is not related to pain using three-dimensional quantitative analysis in an older population: data from the Osteoarthritis Initiative

    Get PDF
    Objectives: Current structural associations of patellofemoral pain (PFP) are based on 2D imaging methodology with inherent measurement uncertainty due to positioning and rotation. This study employed novel technology to create 3D measures of commonly described patellofemoral joint imaging features and compared these features in people with and without PFP in a large cohort. Methods: We compared two groups from the Osteoarthritis Initiative: one with localized PFP and pain on stairs, and a control group with no knee pain; both groups had no radiographic OA. MRI bone surfaces were automatically segmented and aligned using active appearance models. We applied t-tests, logistic regression and linear discriminant analysis to compare 13 imaging features (including patella position, trochlear morphology, facet area and tilt) converted into 3D equivalents, and a measure of overall 3D shape. Results: One hundred and fifteen knees with PFP (mean age 59.7, BMI 27.5 kg/m², female 58.2%) and 438 without PFP (mean age 63.6, BMI 26.9 kg/m², female 52.9%) were included. After correction for multiple testing, no statistically significant differences were found between groups for any of the 3D imaging features or their combinations. A statistically significant discrimination was noted for overall 3D shape between genders, confirming the validity of the 3D measures. Conclusion: Challenging current perceptions, no differences in patellofemoral morphology were found between older people with and without PFP using 3D quantitative imaging analysis. Further work is needed to see if these findings are replicated in a younger PFP population

    Touchdown Ball-Bearing System for Magnetic Bearings

    Get PDF
    The torque-limited touchdown bearing system (TLTBS) is a backup mechanical-bearing system for a high-speed rotary machine in which the rotor shaft is supported by magnetic bearings in steady-state normal operation. The TLTBS provides ball-bearing support to augment or supplant the magnetic bearings during startup, shutdown, or failure of the magnetic bearings. The TLTBS also provides support in the presence of conditions (in particular, rotational acceleration) that make it difficult or impossible to control the magnetic bearings or in which the magnetic bearings are not strong enough (e.g., when the side load against the rotor exceeds the available lateral magnetic force)

    Toward a simulation approach for alkene ring-closing metathesis : scope and limitations of a model for RCM

    Get PDF
    A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of di-Et diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate consts. do not agree with exptl. studies in the literature. However, by fixing the values of important rate consts. and restricting the concn. ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concn. can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims

    Nanosatellite optical downlink experiment: design, simulation, and prototyping

    Get PDF
    The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10  Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.United States. National Aeronautics and Space Administration. Research Fellowship ProgramLincoln Laboratory (Lincoln Scholars)Lincoln Laboratory (Military Fellowship Program)Fundación Obra Social de La Caixa (Fellowship)Samsung FellowshipUnited States. Air Force (Assistant Secretary of Defense for Research & Engineering. Contract FAs872105C0002

    Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome

    Get PDF
    Background: Glioblastoma (GBM) is the most common malignant brain cancer occurring in adults, and is associated with dismal outcome and few therapeutic options. GBM has been shown to predominantly disrupt three core pathways through somatic aberrations, rendering it ideal for precision medicine approaches. Methods: We describe a 35-year-old female patient with recurrent GBM following surgical removal of the primary tumour, adjuvant treatment with temozolomide and a 3-year disease-free period. Rapid whole-genome sequencing (WGS) of three separate tumour regions at recurrence was carried out and interpreted relative to WGS of two regions of the primary tumour. Results: We found extensive mutational and copy-number heterogeneity within the primary tumour. We identified a TP53 mutation and two focal amplifications involving PDGFRA, KIT and CDK4, on chromosomes 4 and 12. A clonal IDH1 R132H mutation in the primary, a known GBM driver event, was detectable at only very low frequency in the recurrent tumour. After sub-clonal diversification, evidence was found for a whole-genome doubling event and a translocation between the amplified regions of PDGFRA, KIT and CDK4, encoded within a double-minute chromosome also incorporating miR26a-2. The WGS analysis uncovered progressive evolution of the double-minute chromosome converging on the KIT/PDGFRA/PI3K/mTOR axis, superseding the IDH1 mutation in dominance in a mutually exclusive manner at recurrence, consequently the patient was treated with imatinib. Despite rapid sequencing and cancer genome-guided therapy against amplified oncogenes, the disease progressed, and the patient died shortly after. Conclusion: This case sheds light on the dynamic evolution of a GBM tumour, defining the origins of the lethal sub-clone, the macro-evolutionary genomic events dominating the disease at recurrence and the loss of a clonal driver. Even in the era of rapid WGS analysis, cases such as this illustrate the significant hurdles for precision medicine success
    corecore