2,137 research outputs found
3D Magnetic Analysis of the CMS Magnet
The CMS magnetic system consists of a super-conducting solenoid coil, 12.5 m
long and 6 m free bore diameter, and of an iron flux-return yoke, which
includes the central barrel, two end-caps and the ferromagnetic parts of the
hadronic forward calorimeter. The magnetic flux density in the center of the
solenoid is 4 T. To carry out the magnetic analysis of the CMS magnetic system,
several 3D models were developed to perform magnetic field and force
calculations using the Vector Fields code TOSCA. The analysis includes a study
of the general field behavior, the calculation of the forces on the coil
generated by small axial, radial displacements and angular tilts, the
calculation of the forces on the ferromagnetic parts, the calculation of the
fringe field outside the magnetic system, and a study of the field level in the
chimneys for the current leads and the cryogenic lines. A procedure to
reconstruct the field inside a cylindrical volume starting from the values of
the magnetic flux density on the cylinder surface is considered. Special
TOSCA-GEANT interface tools have being developed to input the calculated
magnetic field into the detector simulation package.Comment: 4 pages, 6 figures, 1 equation, 14 reference
Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}
Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied
during room temperature annealing following heat treatment. The superconducting
T_c, dc resistivity, and low-energy optical conductivity recover slowly,
implying a long relaxation time for the carrier density. Short relaxation times
are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon
-- and the charge transfer band. Monte Carlo simulations suggest that these two
relaxation rates are related to two length scales corresponding to local oxygen
ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure
Urinary and plasma catecholamines and metanephrines in dogs with pheochromocytoma, hypercortisolism, nonadrenal disease and in healthy dogs.
BACKGROUND: Diagnosis of pheochromocytoma (PC) is based on a combination of clinical suspicion, finding an adrenal mass, increased plasma, and urine concentrations of catecholamine metabolites and is finally confirmed with histopathology. In human medicine, it is controversial whether biochemically testing plasma is superior to testing urine.
OBJECTIVES: To measure urinary and plasma catecholamines and metanephrines in healthy dogs, dogs with PC, hypercortisolism (HC), and nonadrenal diseases (NAD) and to determine the test with the best diagnostic performance for dogs with PC.
ANIMALS: Seven PC dogs, 10 dogs with HC, 14 dogs with NAD, 10 healthy dogs.
METHODS: Prospective diagnostic clinical study. Urine and heparin plasma samples were collected and stored at -80°C before analysis using high-pressure liquid chromatography (HPLC) coupled to electrochemical detection or tandem mass spectrometry were performed. Urinary variables were expressed as ratios to urinary creatinine concentration.
RESULTS: Dogs with PC had significantly higher urinary normetanephrine and metanephrine : creatinine ratios and significantly higher plasma-total and free normetanephrine and plasma-free metanephrine concentrations compared to the 3 other groups. There were no overlapping results of urinary normetanephrine concentrations between PC and all other groups, and only one PC dog with a plasma normetanephrine concentration in the range of the dogs with HC and NAD disease. Performances of total and free plasma variables were similar. Overlap of epinephrine and norepinephrine results between the groups was large with both urine and plasma.
CONCLUSION AND CLINICAL IMPORTANCE: Measurement of normetanephrine is the preferred biochemical test for PC and urine was superior to plasma
Hole-burning experiments within solvable glassy models
We reproduce the results of non-resonant spectral hole-burning experiments
with fully-connected (equivalently infinite-dimensional) glassy models that are
generalizations of the mode-coupling approach to nonequilibrium situations. We
show that an ac-field modifies the integrated linear response and the
correlation function in a way that depends on the amplitude and frequency of
the pumping field. We study the effect of the waiting and recovery-times and
the number of oscillations applied. This calculation will help descriminating
which results can and which cannot be attributed to dynamic heterogeneities in
real systems.Comment: 4 pages, 8 figures, RevTe
converging evidence from an intermediate phenotype approach
Representing a phylogenetically old and very basic mechanism of inhibitory
neurotransmission, glycine receptors have been implicated in the modulation of
behavioral components underlying defensive responding toward threat. As one of
the first findings being confirmed by genome-wide association studies for the
phenotype of panic disorder and agoraphobia, allelic variation in a gene
coding for the glycine receptor beta subunit (GLRB) has recently been
associated with increased neural fear network activation and enhanced acoustic
startle reflexes. On the basis of two independent healthy control samples, we
here aimed to further explore the functional significance of the GLRB genotype
(rs7688285) by employing an intermediate phenotype approach. We focused on the
phenotype of defensive system reactivity across the levels of brain function,
structure, and physiology. Converging evidence across both samples was found
for increased neurofunctional activation in the (anterior) insular cortex in
GLRB risk allele carriers and altered fear conditioning as a function of
genotype. The robustness of GLRB effects is demonstrated by consistent
findings across different experimental fear conditioning paradigms and
recording sites. Altogether, findings provide translational evidence for
glycine neurotransmission as a modulator of the brain’s evolutionary old
dynamic defensive system and provide further support for a strong,
biologically plausible candidate intermediate phenotype of defensive
reactivity. As such, glycine-dependent neurotransmission may open up new
avenues for mechanistic research on the etiopathogenesis of fear and anxiety
disorders
Chiral photoelectron angular distributions from ionization of achiral atomic and molecular species
We show that the combination of two achiral components - atomic or molecular
target plus a circularly polarized photon - can yield chirally structured
photoelectron angular distributions. For photoionization of CO, the angular
distribution of carbon K-shell photoelectrons is chiral when the molecular axis
is neither perpendicular nor (anti-)parallel to the light propagation axis. In
photo-double-ionization of He, the distribution of one electron is chiral, if
the other electron is oriented like the molecular axis in the former case and
if the electrons are distinguishable by their energy. In both scenarios, the
circularly polarized photon defines a plane with a sense of rotation and an
additional axis is defined by the CO molecule or one electron. This is
sufficient to establish an unambiguous coordinate frame of well-defined
handedness. To produce a chirally structured electron angular distribution,
such a coordinate frame is necessary, but not sufficient. We show that
additional electron-electron interaction or scattering processes are needed to
create the chiral angular distribution
Anisotropic optical properties of single-crystal GdBa2Cu3O7-delta
The optical spectrum of reduced-T(c) GdBa2Cu3O7-delta has been measured for polarizations parallel and perpendicular to the ab plane. The sample was an oxygen-deficient single crystal with a large face containing the c axis. The polarized reflectance from this face was measured from 20-300 K in the spectral region from 30-3000 cm-1, with 300 K data to 30 000 cm-1. Kramers-Kronig analysis was used to determine the spectral dependence of the ab and the c components of the dielectric tensor. The optical properties are strongly anisotropic. The ab-plane response resembles that of other reduced-T(c) materials whereas the c axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response along c above and below T(c). This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes
The superconducting strand for the CMS solenoid conductor
The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. Approximately 2000 km of superconducting strand is under procurement for the conductor of the CMS superconducting solenoid. Each strand length is required to be an integral multiple of 2.75 km. The strand is composed of copper- stabilized multifilamentary Nb-Ti with Nb barrier. Individual strands are identified by distinctive patterns of Nb-Ti filaments selected during stacking of the monofilaments. The statistics of piece length, measurements of I/sub c/, n-value, copper RRR, (Cu+Nb)/Nb-Ti ratio, as well as the results of independent cross checks of these quantities, are presented. A study was performed on the CMS strands to investigate the critical current degradation due to various heat treatments. The degradation versus annealing temperature and duration are reported. (4 refs)
Commissioning of the CMS Magnet
CMS (Compact Muon Solenoid) is one of the large experiments for the LHC at CERN. The superconducting magnet for CMS has been designed to reach a 4 T field in a free bore of 6 m diameter and 12.5 m length with a stored energy of 2.6 GJ at full current. The flux is returned through a 10 000 t yoke comprising of five wheels and two end caps composed of three disks each. The magnet was designed to be assembled and tested in a surface hall, prior to be lowered at 90 m below ground, to its final position in the experimental cavern. The distinctive feature of the cold mass is the four-layer winding, made from a reinforced and stabilized NbTi conductor. The design and construction was carried out by CMS participating institutes through technical and contractual endeavors. Among them CEA Saclay, INFN Genova, ETH Zurich, Fermilab, ITEP Moscow, University of Wisconsin and CERN. The construction of the CMS Magnet, and of the coil in particular, has been completed last year. The magnet has just been powered to full field achieving electrical commissioning. After a brief reminder of the design and construction the first results of the commissioning are reported in this paper
- …
