915 research outputs found

    Finite-Element Simulations of Light Propagation through Circular Subwavelength Apertures

    Full text link
    Light transmission through circular subwavelength apertures in metallic films with surrounding nanostructures is investigated numerically. Numerical results are obtained with a frequency-domain finite-element method. Convergence of the obtained observables to very low levels of numerical error is demonstrated. Very good agreement to experimental results from the literature is reached, and the utility of the method is demonstrated in the investigation of the influence of geometrical parameters on enhanced transmission through the apertures

    Electric-field-induced phase transition of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    Full text link
    oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were poled under different electric fields, i.e. Epoling=4 kV/cm and Epoling=13 kV/cm. In addition to the temperature-dependent dielectric constant measurement, X-ray diffraction was also used to identify the poling-induced phase transitions. Results showed that the phase transition significantly depends on the poling intensity. A weaker field (Epoling=4 kV/cm) can overcome the effect of random internal field to perform the phase transition from rhombohedral ferroelectric state with short range ordering (microdomain) FESRO to rhombohedral ferroelectric state with long range ordering (macrodomain) FElRO. But the rhombohedral ferroelectric to tetragonal ferroelectric phase transition originating from to polarization rotation can only be induced by a stronger field (Epoling=13 kV/cm). The sample poled at Epoling=4 kV/cm showed higher piezoelectric constant, d33>1500 pC/N, than the sample poled at Epoling=13 kV/cm.Comment: 7 pages, 2 figure

    Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C60_{60} (TDAE-C60_{60})

    Full text link
    Critical exponents at the ferromagnetic transition were measured for the first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene fullerene[60] (TDAE-C60_{60}). From a complete magnetization-temperature-field data set near Tc=16.1±0.05,T_{c}=16.1\pm 0.05, we determine the susceptibility and magnetization critical exponents γ=1.22±0.02\gamma =1.22\pm 0.02 and β=0.75±0.03\beta =0.75 \pm 0.03 respectively, and the field vs. magnetization exponent at TcT_{c} of δ=2.28±0.14\delta =2.28\pm 0.14. Hyperscaling is found to be violated by Ωdd1/4\Omega \equiv d^{\prime}-d \approx -1/4, suggesting that the onset of ferromagnetism can be related to percolation of a particular contact configuration of C60_{60} molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let

    Coexistence of the Critical Slowing Down and Glassy Freezing in Relaxor Ferroelectrics

    Full text link
    We have developed a dynamical model for the dielectric response in relaxor ferroelectrics which explicitly takes into account the coexistence of the critical slowing down and glassy freezing. The application of the model to the experiment in PMN allowed for the reconstruction of the nonequilibrium spin glass state order parameter and its comparison with the results of recent NMR experiment (Blinc et al., Phys. Rev. Lett. 83, No. 2 (1999)). It is shown that the degree of the local freezing is rather small even at temperatures where the field-cooled permittivity exceeds the frequency dependent permittivity by an order of magnitude. This observation indicates the significant role of the critical slowing down (accompanying the glass freezing) in the system dynamics. Also the theory predicts an important interrelationship between the frequency dependent permittivity and the zero-field-cooled permittivity, which proved to be consistent with the experiment in PMN (A. Levstik et. al., Phys. Rev. B 57, 11204 (1998))

    Random Field Models for Relaxor Ferroelectric Behavior

    Full text link
    Heat bath Monte Carlo simulations have been used to study a four-state clock model with a type of random field on simple cubic lattices. The model has the standard nonrandom two-spin exchange term with coupling energy JJ and a random field which consists of adding an energy DD to one of the four spin states, chosen randomly at each site. This Ashkin-Teller-like model does not separate; the two random-field Ising model components are coupled. When D/J=3D / J = 3, the ground states of the model remain fully aligned. When D/J4D / J \ge 4, a different type of ground state is found, in which the occupation of two of the four spin states is close to 50%, and the other two are nearly absent. This means that one of the Ising components is almost completely ordered, while the other one has only short-range correlations. A large peak in the structure factor S(k)S (k) appears at small kk for temperatures well above the transition to long-range order, and the appearance of this peak is associated with slow, "glassy" dynamics. The phase transition into the state where one Ising component is long-range ordered appears to be first order, but the latent heat is very small.Comment: 7 pages + 12 eps figures, to appear in Phys Rev

    Worldwide food recall patterns over an eleven month period: A country perspective.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Following the World Health Organization Forum in November 2007, the Beijing Declaration recognized the importance of food safety along with the rights of all individuals to a safe and adequate diet. The aim of this study is to retrospectively analyze the patterns in food alert and recall by countries to identify the principal hazard generators and gatekeepers of food safety in the eleven months leading up to the Declaration.</p> <p>Methods</p> <p>The food recall data set was collected by the Laboratory of the Government Chemist (LGC, UK) over the period from January to November 2007. Statistics were computed with the focus reporting patterns by the 117 countries. The complexity of the recorded interrelations was depicted as a network constructed from structural properties contained in the data. The analysed network properties included degrees, weighted degrees, modularity and <it>k</it>-core decomposition. Network analyses of the reports, based on 'country making report' (<it>detector</it>) and 'country reported on' (<it>transgressor</it>), revealed that the network is organized around a dominant core.</p> <p>Results</p> <p>Ten countries were reported for sixty per cent of all faulty products marketed, with the top 5 countries having received between 100 to 281 reports. Further analysis of the dominant core revealed that out of the top five transgressors three made no reports (in the order China > Turkey > Iran). The top ten detectors account for three quarters of reports with three > 300 (Italy: 406, Germany: 340, United Kingdom: 322).</p> <p>Conclusion</p> <p>Of the 117 countries studied, the vast majority of food reports are made by 10 countries, with EU countries predominating. The majority of the faulty foodstuffs originate in ten countries with four major producers making no reports. This pattern is very distant from that proposed by the Beijing Declaration which urges all countries to take responsibility for the provision of safe and adequate diets for their nationals.</p

    Interface driven magnetoelectric effects in granular CrO2

    Full text link
    Antiferromagnetic and magnetoelectric Cr2O3-surfaces strongly affect the electronic properties in half metallic CrO2. We show the presence of a Cr2O3 surface layer on CrO3 grains by high-resolution transmission electron microscopy. The effect of these surface layers is demonstrated by measurements of the temperature variation of the magnetoelectric susceptibility. A major observation is a sign change at about 100 K followed by a monotonic rise as a function of temperature. These electric field induced moments in CrO3 are correlated with the magnetoelectric susceptibility of pure Cr2O3. This study indicates that it is important to take into account the magnetoelectric character of thin surface layers of Cr2O3 in granular CrO2 for better understanding the transport mechanism in this system. The observation of a finite magnetoelectric susceptibility near room temperature may find utility in device applications.Comment: Figure 1 with strongly reduced resolutio

    Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3

    Full text link
    The microstructure and phase transition in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain to be one of the most puzzling issues of solid state science. In the present work we have investigated the evolution of the phase symmetry in PMN-xPT ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <= x <= 0.15) by means of high-resolution synchrotron x-ray diffraction. Structural analysis based on the experimental data reveals that the substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in the development of a clean rhombohedral phase at a PT-concentration as low as 5%. The results provide some new insight into the development of the ferroelectric order in PMN-PT, which has been discussed in light of the kinetics of polar nanoregions and the physical models of the relaxor ferroelectrics to illustrate the structural evolution from a relaxor to a ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde
    corecore