5,400 research outputs found

    Co–Au core-shell nanocrystals formed by sequential ion implantation into SiO₂

    No full text
    Co–Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO₂. The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au–Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions.P.K. and M.C.R. thank the Australian Research Council for support. P.K., B.H., B.J., and M.C.R. were supported by the Australian Synchrotron Research Program, funded by the Commonwealth of Australia via the Major National Research Facilities Program

    In situ annealing studies of ion tracks in amorphous Fe-B alloys

    Get PDF

    Nano-porosity in GaSb induced by swift heavy ion irradiation

    Get PDF
    Nano-porous structures form in GaSb after ion irradiation with 185 MeV Au ions. The porous layer formation is governed by the dominant electronic energy loss at this energy regime. The porous layer morphology differs significantly from that previously reported for low-energy, ion-irradiated GaSb. Prior to the onset of porosity, positron annihilation lifetime spectroscopy indicates the formation of small vacancy clusters in single ion impacts, while transmission electron microscopy reveals fragmentation of the GaSb into nanocrystallites embedded in an amorphous matrix. Following this fragmentation process, macroscopic porosity forms, presumably within the amorphous phase.The authors thank the Australian Research Council for support and the staff at the ANU Heavy Ion Accelerator Facility for their continued technical assistance. R.C.E. acknowledges the support from the Office of Basic Energy Sciences of the U.S. DOE (Grant No. DE-FG02-97ER45656)

    Measurement of the strong coupling alpha_S from the three-jet rate in e+e- - annihilation using JADE data

    Get PDF
    We present a measurement of the strong coupling alpha_S using the three-jet rate measured with the Durham algorithm in e+e- -annihilation using data of the JADE experiment at centre-of-mass energies between 14 and 44 GeV. Recent theoretical improvements provide predictions of the three-jet rate in e+e- -annihilation at next-to-next-to-leading order. In this paper a measurement of the three-jet rate is used to determine the strong coupling alpha_s from a comparison to next-to-next-to-leading order predictions matched with next-to-leading logarithmic approximations and yields a value for the strong coupling alpha_S(MZ) = 0.1199+- 0.0010 (stat.) +- 0.0021 (exp.) +- 0.0054 (had.) +- 0.0007 (theo.) consistent with the world average.Comment: 27 pages, 8 figure

    Determination of the Strong Coupling \boldmath{\as} from hadronic Event Shapes and NNLO QCD predictions using JADE Data

    Get PDF
    Event Shape Data from e+ee^+e^- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used to determine the strong coupling αS\alpha_S. QCD predictions complete to next-to-next-to-leading order (NNLO), alternatively combined with resummed next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The combined value from six different event shape observables at the six JADE centre-of-mass energies using the NNLO calculations is αS(MZ)\alpha_S(M_Z)= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.) +/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is αS\alpha_S= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/- 0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to missing higher order contributions, studied by variations of the renormalisation scale, is improved compared to previous results obtained with NLO+NLLA or with NLO predictions only. The observed energy dependence of αS\alpha_S agrees with the QCD prediction of asymptotic freedom and excludes absence of running with 99% confidence level.Comment: 9 pages, EPHJA style, 4 figures, corresponds to published version with JADE author lis

    Congenital diaphragmatic hernia: the impact of embryological studies

    Get PDF
    In recent years, a substantial research effort within the specialty of pediatric surgery has been devoted to improving our knowledge of the natural history and pathophysiology of congenital diaphragmatic hernias (CDH) and pulmonary hypoplasia (PH). However, the embryological background has remained elusive because certain events of normal diaphragmatic development were still unclear and appropriate animal models were lacking. Most authors assume that delayed or inhibited closure of the diaphragm will result in a diaphragmatic defect that is wide enough to allow herniation of the gut into the fetal thoracic cavity. However, we feel that this assumption is not based on appropriate embryological observations. To clarify whether it was correct, we restudied the morphology of pleuroperitoneal openings in normal rat embryos. Shortly before, a model for CDH and PH had been established in rats using nitrofen (2,4-di-chloro-phenyl-p-nitrophenyl ether) as teratogen. We used this model in an attempt to answer the following questions: (1) When does the diaphragmatic defect appear? (2) Are the pleuroperitoneal canals the precursors of the diaphragmatic defect? (3) Why is the lung hypoplastic in babies and infants with CDH? In our study we made following observations: (1) The typical findings of CDH and PH cannot be explained by inhibited closure of the pleuroperitoneal "canals". In normal development, the pleuroperitoneal openings are always too small to allow herniation of gut into the thoracic cavity. (2) The maldevelopment of the diaphragm starts rather early in the embryonic period (5th week). The lungs of CDH rats are significantly smaller than those of control rats at the end of the embryonic period (8th week). (3) The maldevelopment of the lungs in rats with CDH is "secondary" to the defect of the diaphragm. (4) The defect of the lungs is "structural" rather than "functional". Complete spontaneous correction of these lung defects is unlikely even after fetal intervention. (5) The "fetal lamb model" does not completely mimic the full picture of CDH, because the onset of the defect lies clearly in the fetal period. We believe that our rat model is better. It is especially useful for describing the abnormal embryology of this lesion

    High-precision αs\alpha_s measurements from LHC to FCC-ee

    Full text link
    This document provides a writeup of all contributions to the workshop on "High precision measurements of αs\alpha_s: From LHC to FCC-ee" held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the QCD coupling αs\alpha_s from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) τ\tau decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in e±e^\pmp DIS and γ\gamma-p photoproduction, (ix) photon structure function in γ\gamma-γ\gamma, (x) event shapes and (xi) jet cross sections in e+ee^+e^- collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in e+ee^+e^- collisions at the Future Circular Collider (FCC-ee) with O\cal{O}(1--100 ab1^{-1}) integrated luminosities yielding 1012^{12} Z bosons and jets, and 108^{8} W bosons and τ\tau leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, αs(mZ)\alpha_s(m_Z) = 0.1177 ±\pm 0.0013, is about 1\%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the αs\alpha_s uncertainty should be possible, mostly thanks to the huge Z and W data samples available.Comment: 135 pages, 56 figures. CERN-PH-TH-2015-299, CoEPP-MN-15-13. This document is dedicated to the memory of Guido Altarell
    corecore