280 research outputs found
Expression signatures of cisplatin- and trametinib-treated early-stage medaka melanomas
Small aquarium fish models provide useful systems not only for a better understanding of the molecular basis of many human diseases, but also for first-line screening to identify new drug candidates. For testing new chemical substances, current strategies mostly rely on easy to perform and efficient embryonic screens. Cancer, however, is a disease that develops mainly during juvenile and adult stage. Long-term treatment and the challenge to monitor changes in tumor phenotype make testing of large chemical libraries in juvenile and adult animals cost prohibitive. We hypothesized that changes in the gene expression profile should occur early during anti-tumor treatment, and the disease-associated transcriptional change should provide a reliable readout that can be utilized to evaluate drug-induced effects. For the current study, we used a previously established medaka melanoma model. As proof of principle, we showed that exposure of melanoma developing fish to the drugs cisplatin or trametinib, known cancer therapies, for a period of seven days is sufficient to detect treatment-induced changes in gene expression. By examining whole body transcriptome responses we provide a novel route toward gene panels that recapitulate anti-tumor outcomes thus allowing a screening of thousands of drugs using a whole-body vertebrate model. Our results suggest that using disease-associated transcriptional change to screen therapeutic molecules in small fish model is viable and may be applied to pre-clinical research and development stages in new drug discovery
In vitro evidence for senescent multinucleated melanocytes as a source for tumor-initiating cells
Oncogenic signaling in melanocytes results in oncogene-induced senescence (OIS), a stable cell-cycle arrest frequently characterized by a bi- or multinuclear phenotype that is considered as a barrier to cancer progression. However, the long-sustained conviction that senescence is a truly irreversible process has recently been challenged. Still, it is not known whether cells driven into OIS can progress to cancer and thereby pose a potential threat. Here, we show that prolonged expression of the melanoma oncogene N-RAS61K in pigment cells overcomes OIS by triggering the emergence of tumor-initiating mononucleated stem-like cells from senescent cells. This progeny is dedifferentiated, highly proliferative, anoikis-resistant and induces fast growing, metastatic tumors. Our data describe that differentiated cells, which are driven into senescence by an oncogene, use this senescence state as trigger for tumor transformation, giving rise to highly aggressive tumor-initiating cells. These observations provide the first experimental in vitro evidence for the evasion of OIS on the cellular level and ensuing transformation
Sequential induction of effector function, tissue migration and cell death during polyclonal activation of mouse regulatory T-cells
The ability of CD4+Foxp3+ regulatory T-cells (Treg) to produce interleukin (IL)-10 is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, few Tregs produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregs we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Tregs, which not only led to their numeric expansion but also to a dramatic increase in IL-10 production. IL-10 secreting Tregs strongly upregulated surface receptors associated with suppressive function as compared to non-producing Tregs. Furthermore, polyclonally expanding Tregs shifted their migration receptor pattern after activation from a CCR7+CCR52 lymph node-seeking to a CCR72CCR5+ inflammationseeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Tregs from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Tregs results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression
MicroRNA-24 regulates vascularity after myocardial infarction
BACKGROUND: Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS: Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS: Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease. [KEYWORDS: Animals, Apoptosis/drug effects, Arterioles/pathology, Capillaries/pathology, Cell Hypoxia, Cells, Cultured/drug effects/metabolism, Collagen, Drug Combinations, Drug Evaluation, Preclinical, Endothelial Cells/ metabolism/pathology, GATA2 Transcription Factor/biosynthesis/genetics, Gene Expression Profiling, Heart Failure/etiology, Heme Oxygenase-1/biosynthesis/genetics, Laminin, Male, Mice, Mice, Inbred C57BL, MicroRNAs/antagonists & inhibitors/genetics/ physiology, Myocardial Infarc
Blood Vessel Density in Basal Cell Carcinomas and Benign Trichogenic Tumors as a Marker for Differential Diagnosis in Dermatopathology
In order to get insight into the density of blood vessels in the stroma of benign and malignant trichogenic neoplasms, immunohistological quantification of CD 31 positive vessels was performed in 112 tumors, comprised of 50 BCCs of nodular (35) or morphoeic (15) growth patterns, 17 Pinkus' tumors, as well as 17 trichoepitheliomas of which 6 were desmoplastic, 8 trichofolliculomas, and 20 trichoblastomas.
Methods. Vessel density was counted within the tumors, in the tumor-surrounding stroma, and, as a control, in the normal skin of the operation specimen. The results were compared using statistical methods.
Results. Whereas, irrespective of the patients' age and location of tumors, the vessel density in normal skin showed no significant differences (8.8 ± 2.7), the counts in the peritumoral stroma revealed significant differences between the different tumors investigated. The highest counts were obtained in BCC (24.7 ± 6.7) and the lowest in benign trichogenic neoplasms (around 14) Pinkus' tumors revealed intermediate counts (19.7 ± 6.6). The vessel densities within the tumors were generally low, and no correlation to the dignity was found.
Conclusion. Determination of blood vessel density in the peritumoral stroma may be an additional parameter for differential diagnosis of trichogenic tumors of uncertain dignity
FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis
Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ
Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts
cited By 10International audienceUsing model catalysts, we demonstrate that CO desorption from Ru surfaces can be switched from that typical of single crystal surfaces to one more characteristic of supported nanoparticles. First, the CO desorption behaviour from Ru nanoparticles supported on highly oriented pyrolytic graphite was studied. Both mass-selected and thermally evaporated nanoparticles were deposited. TPD spectra from the mass-selected nanoparticles exhibit a desorption peak located around 410 K with a broad shoulder extending from around 480 K to 600 K, while spectra obtained from thermally evaporated nanoparticles exhibit a single broad feature from ∼350 K to ∼450 K. A room temperature deposited 50 Å thick Ru film displays a characteristic nanoparticle-like spectrum with a broad desorption feature at ∼420 K and a shoulder extending from ∼450 K to ∼600 K. Subsequent annealing of this film at 900 K produced a polycrystalline morphology of flat Ru(001) terraces separated by monatomic steps. The CO desorption spectrum from this surface resembles that obtained on single crystal Ru(001) with two large desorption features located at 390 K and 450 K due to molecular desorption from terrace sites, and a much smaller peak at ∼530 K due to desorption of dissociatively adsorbed CO at step sites. In a second experiment, ion sputtering was used to create surface defects on a Ru(0 1 54) single crystal surface. A gradual shift away from the desorption spectrum typical of a Ru(001) surface towards one resembling desorption from supported Ru nanoparticles was observed with increasing sputter time. © 2011 the Owner Societies
Mycosis fungoides bullosa: a case report and review of the literature
Introduction: Mycosis fungoides, the most common type of cutaneous T-cell lymphoma, can manifest in a variety of clinical and histological forms. Bulla formation is an uncommon finding in mycosis fungoides and only approximately 20 cases have been reported in the literature. Case presentation: We present a case of rapidly progressive mycosis fungoides in a 68-year-old Caucasian man who initially presented with erythematous plaques characterised by blister formation. Conclusion: Although mycosis fungoides bullosa is extremely rare, it has to be regarded as an important clinical subtype of cutaneous T-cell lymphoma. Mycosis fungoides bullosa represents a particularly aggressive form of mycosis fungoides and is associated with a poor prognosis. The rapid disease progression in our patient confirms bulla formation as an adverse prognostic sign in cutaneous T-cell lymphoma
Identification of miR-21-5p and miR-210-3p serum levels as biomarkers for patients with papillary renal cell carcinoma: a multicenter analysis
BACKGROUND: Expression of circulating serum microRNAs has not been studied in a cohort of patients with papillary renal cell carcinoma (pRCC) so far. We hypothesized that miRNA deregulation in malignant tissue is reflected in serum and could be used for non-invasive diagnosis of pRCC as well as differentiation between type 1 and type 2 pRCC. METHODS: We selected 11 differentially regulated miRNAs from the Cancer Genome Atlas (TCGA) pRCC data set as potential serum validation candidates. Serum miRNA expression was determined by qRT-PCR in a total of 34 pRCC type 1, 33 pRCC type 2 and 33 control subjects of three german high-volume medical centers. RESULTS: Heatmap and principal component analysis showed that miRNA expression did not cluster the samples into distinct sample groups and that miRNA levels did not significantly discriminate healthy individuals from patients with pRCC, nor between patients with type 1 and type 2 pRCC. However, miR-21-5p levels were significantly increased in patients with advanced pRCC (>pT3, and/or pN+ and/or pM+) in comparison to localized pRCC. Moreover, adding the expression of miR-210-3p, which was significantly down-regulated in localized pRCC sera in comparison to healthy sera, additionally increased diagnostic accuracy in our study cohort. CONCLUSIONS: In our multicenter cohort, we were not able to identify a single miRNA serum marker for pRCC including its subclasses. However, our study revealed that miR-21-5p levels were elevated in advanced disease (with added diagnostic accuracy via addition of miR-210-3p expression), proposing these two miRs as potential biomarkers in pRCC
A new method for determination of varicella-zoster virus immunoglobulin G avidity in serum and cerebrospinal fluid
BACKGROUND: Avidity determination of antigen-specific immunoglobulin G (IgG) antibodies is an established serological method to differentiate acute from past infections. In order to compare the avidity of varicella-zoster virus (VZV) IgG in pairs of serum and cerebrospinal fluid (CSF) samples, we developed a new technique of avidity testing, the results of which are not influenced by the concentration of specific IgG. METHODS: The modifications introduced for the new VZV IgG avidity method included the use of urea hydrogen peroxide as denaturing reagent, the adaptation of the assay parameters in order to increase the sensitivity for the detection of low-level VZV IgG in CSF, and the use of a new calculation method for avidity results. The calculation method is based on the observation that the relationship between the absorbance values of the enzyme immunoassays with and without denaturing washing step is linear. From this relationship, a virtual absorbance ratio can be calculated. To evaluate the new method, a panel of serum samples from patients with acute and past VZV infection was tested as well as pairs of serum and CSF. RESULTS: For the serum panel, avidity determination with the modified assay gave results comparable to standard avidity methods. Based on the coefficient of variation, the new calculation method was superior to established methods of avidity calculation. CONCLUSIONS: The new avidity method permits a meaningful comparison of VZV IgG avidity in serum and CSF and should be of general applicability for easy determination of avidity results, which are not affected by the concentration of specific IgG
- …
