3,624 research outputs found
Recommended from our members
Favorskii rearrangement of some α-Bromo-ketones
The base-induced rearrangement of α-halogenoketones to give carboxylic acid derivatives (Favorskii rearrangements) occurs by at least two mechanisms. The stereochemistry, and structure of many Favorskii products can be explained in terms of a cyclopropanone intermediate. However, a "benzylic-like" rearrangement appears to operate when the substrate ketone bears no α'-hydrogen, when the α'-hydrogen is relatively non-acidic, or when steric or strain factors inhibit cyclopropanone formation. In addition, the formation of a dipolar intermediate which may precede (or follow) cyclopropanone formation is supported by theoretical considerations, loss of stereospecificity upon rearrangement in polar solvents, the formation of α-substitution products as a side reaction, and the trapping of a possible Favorskii intermediate "dehydrohalogenate" to form a common intermediate leading to the same product
Hyperbolic planforms in relation to visual edges and textures perception
We propose to use bifurcation theory and pattern formation as theoretical
probes for various hypotheses about the neural organization of the brain. This
allows us to make predictions about the kinds of patterns that should be
observed in the activity of real brains through, e.g. optical imaging, and
opens the door to the design of experiments to test these hypotheses. We study
the specific problem of visual edges and textures perception and suggest that
these features may be represented at the population level in the visual cortex
as a specific second-order tensor, the structure tensor, perhaps within a
hypercolumn. We then extend the classical ring model to this case and show that
its natural framework is the non-Euclidean hyperbolic geometry. This brings in
the beautiful structure of its group of isometries and certain of its subgroups
which have a direct interpretation in terms of the organization of the neural
populations that are assumed to encode the structure tensor. By studying the
bifurcations of the solutions of the structure tensor equations, the analog of
the classical Wilson and Cowan equations, under the assumption of invariance
with respect to the action of these subgroups, we predict the appearance of
characteristic patterns. These patterns can be described by what we call
hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of
the planforms that were used in [1, 2] to account for some visual
hallucinations. If these patterns could be observed through brain imaging
techniques they would reveal the built-in or acquired invariance of the neural
organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table
Recommended from our members
Measurement of masses in the [Formula: see text] system by kinematic endpoints in pp collisions at [Formula: see text].
A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for [Formula: see text] events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at [Formula: see text]. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of [Formula: see text] is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics
Recommended from our members
Measurement of WZ and ZZ production in pp collisions at [Formula: see text] in final states with b-tagged jets.
Measurements are reported of the WZ and ZZ production cross sections in proton-proton collisions at [Formula: see text][Formula: see text] in final states where one Z boson decays to b-tagged jets. The other gauge boson, either W or Z, is detected through its leptonic decay (either [Formula: see text], [Formula: see text] or [Formula: see text], [Formula: see text], or [Formula: see text]). The results are based on data corresponding to an integrated luminosity of 18.9 fb[Formula: see text] collected with the CMS detector at the Large Hadron Collider. The measured cross sections, [Formula: see text] and [Formula: see text], are consistent with next-to-leading order quantum chromodynamics calculations
Recommended from our members
Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at [Formula: see text].
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 5.0[Formula: see text] collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25[Formula: see text] respectively, in the pseudorapidity range [Formula: see text], [Formula: see text] and with an angular separation [Formula: see text], is [Formula: see text][Formula: see text]. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics
Measurement of jet multiplicity distributions in [Formula: see text] production in pp collisions at [Formula: see text].
The normalised differential top quark-antiquark production cross section is measured as a function of the jet multiplicity in proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] at the LHC with the CMS detector. The measurement is performed in both the dilepton and lepton+jets decay channels using data corresponding to an integrated luminosity of 5.0[Formula: see text]. Using a procedure to associate jets to decay products of the top quarks, the differential cross section of the [Formula: see text] production is determined as a function of the additional jet multiplicity in the lepton+jets channel. Furthermore, the fraction of events with no additional jets is measured in the dilepton channel, as a function of the threshold on the jet transverse momentum. The measurements are compared with predictions from perturbative quantum chromodynamics and no significant deviations are observed
Study of Z boson production in pPb collisions at √sNN = 5.02 TeV
© 2016 The Author.The production of Z bosons in pPb collisions at sNN=5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions
- …
