11,881 research outputs found
Decoding the activity of neuronal populations in macaque primary visual cortex
Visual function depends on the accuracy of signals carried by visual cortical neurons. Combining information across neurons should improve this accuracy because single neuron activity is variable. We examined the reliability of information inferred from populations of simultaneously recorded neurons in macaque primary visual cortex. We considered a decoding framework that computes the likelihood of visual stimuli from a pattern of population activity by linearly combining neuronal responses and tested this framework for orientation estimation and discrimination. We derived a simple parametric decoder assuming neuronal independence and a more sophisticated empirical decoder that learned the structure of the measured neuronal response distributions, including their correlated variability. The empirical decoder used the structure of these response distributions to perform better than its parametric variant, indicating that their structure contains critical information for sensory decoding. These results show how neuronal responses can best be used to inform perceptual decision-making
Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter.
Lentiviral vectors almost universally use heterologous internal promoters to express transgenes. One of the most commonly used promoter fragments is a 1.2-kb sequence from the human ubiquitin C (UBC) gene, encompassing the promoter, some enhancers, first exon, first intron and a small part of the second exon of UBC. Because splicing can occur after transcription of the vector genome during vector production, we investigated whether the intron within the UBC promoter fragment is faithfully transmitted to target cells. Genetic analysis revealed that more than 80% of proviral forms lack the intron of the UBC promoter. The human elongation factor 1 alpha (EEF1A1) promoter fragment intron was not lost during lentiviral packaging, and this difference between the UBC and EEF1A1 promoter introns was conferred by promoter exonic sequences. UBC promoter intron loss caused a 4-fold reduction in transgene expression. Movement of the expression cassette to the opposite strand prevented intron loss and restored full expression. This increase in expression was mostly due to non-classical enhancer activity within the intron, and movement of putative intronic enhancer sequences to multiple promoter-proximal sites actually repressed expression. Reversal of the UBC promoter also prevented intron loss and restored full expression in bidirectional lentiviral vectors
Recommended from our members
Long-term neurocognitive function of pediatric patients with severe combined immune deficiency (SCID): pre- and post-hematopoietic stem cell transplant (HSCT).
BACKGROUND:Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe combined immunodeficiency (SCID). The purpose of this study was to evaluate long-term neurodevelopment of patients with SCID following myeloablative chemotherapy and HSCT. MATERIALS AND METHODS:Sixteen pediatric patients diagnosed with SCID were tested using the Bayley Scales of Infant Development and the validated Vineland Adaptive Behavior Scales (VABS) pre- and 1-year post-HSCT. Three years post-HSCT, there were 11 patients available for testing and four patients available 5 years post-HSCT. Patients greater than 3 years of age were administered the Wechsler Preschool and Primary Scale of Intelligence. Both raw scores and scaled scores were analyzed. RESULTS:There was a significant decrease 1 year post-HSCT in the Bayley Mental Developmental Index (MDI) [92.5 (pre) vs. 70.81 (1 year post), p < 0.0001] and the VABS [99.73 (pre) vs. 79.87 (1 year post), p = <0.0001]. There was a significant decrease over time in the MDI [95.00 (pre) vs. 72.64 (1 year post) vs. 71.82 (3 years post), p < 0.0001], but no significant change between 1 and 3 years post-HSCT. There was no change in the Bayley Psychomotor Development Scale (PDI) [82.4 (pre) vs. 84.8 (1 year post), p = 0.68]. The PDI scores decreased over time [86.29 (pre) vs. 86 (1 year post) vs. 74.14 (3 years post), p = 0.045]. Although there was a decrease in scaled scores, there was not a loss of skills. Analysis of raw scores showed that there was an increase in the raw test scores, which indicated that these children acquired developmental skills, but at a slower rate than normal infants and toddlers. Younger children had a more significant decrease in adaptive scores compared with older children. CONCLUSIONS:These findings may reflect the effects of the isolation and prolonged hospitalization that characterizes the immediate post-transplant period. Patients miss out on social interactions and learning opportunities that normally occur at their respective stages of development. These restrictions keep patients from acquiring developmentally appropriate cognitive skills as well as gross and fine motor developmental milestones. Longitudinal follow-up will be important to quantify acquisition of skills
Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization.
Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR's and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors
Impulse oscillometry identifies peripheral airway dysfunction in children with adenosine deaminase deficiency.
Adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is characterized by impaired T-, B- and NK-cell function. Affected children, in addition to early onset of infections, manifest non-immunologic symptoms including pulmonary dysfunction likely attributable to elevated systemic adenosine levels. Lung disease assessment has primarily employed repetitive radiography and effort-dependent functional studies. Through impulse oscillometry (IOS), which is effort-independent, we prospectively obtained objective measures of lung dysfunction in 10 children with ADA-SCID. These results support the use of IOS in the identification and monitoring of lung function abnormalities in children with primary immunodeficiencies
Conduction band tight-binding description for silicon applied to phosphorous donors
A tight-binding parametrization for silicon, optimized to correctly reproduce
effective masses as well as the reciprocal space positions of the
conduction-band minima, is presented. The reliability of the proposed
parametrization is assessed by performing systematic comparisons between the
descriptions of donor impurities in Si using this parametrization and
previously reported ones. The spectral decomposition of the donor wavefunction
demonstrates the importance of incorporating full band effects for a reliable
representation, and that an incomplete real space description results from a
truncated reciprocal space expansion as proposed within the effective mass
theory.Comment: 4 pages, 3 figure
Deformation of the Fermi surface in the extended Hubbard model
The deformation of the Fermi surface induced by Coulomb interactions is
investigated in the t-t'-Hubbard model. The interplay of the local U and
extended V interactions is analyzed. It is found that exchange interactions V
enhance small anisotropies producing deformations of the Fermi surface which
break the point group symmetry of the square lattice at the Van Hove filling.
This Pomeranchuck instability competes with ferromagnetism and is suppressed at
a critical value of U(V). The interaction V renormalizes the t' parameter to
smaller values what favours nesting. It also induces changes on the topology of
the Fermi surface which can go from hole to electron-like what may explain
recent ARPES experiments.Comment: 5 pages, 4 ps figure
Photoexcited transients in disordered semiconductors: Quantum coherence at very short to intermediate times
We study theoretically electron transients in semiconductor alloys excited by
light pulses shorter than 100 femtoseconds and tuned above the absorption edge
during and shortly after the pulse, when disorder scattering is dominant.
We use non-equilibrium Green functions employing the field-dependent
self-consistent Born approximation. The propagators and the particle
correlation function are obtained by a direct numerical solution of the Dyson
equations in differential form. For the purely elastic scattering in our model
system the solution procedures for the retarded propagator and for the
correlation function can be decoupled.The propagator is used as an input in
calculating the correlation function. Numerical results combined with a
cumulant expansion permit to separate in a consistent fashion the dark and the
induced parts of the self-energy. The dark behavior reduces to propagation of
strongly damped quasi-particles; the field induced self-energy leads to an
additional time non-local coherence. The particle correlation function is
formed by a coherent transient and an incoherent back-scattered component. The
particle number is conserved only if the field induced coherence is fully
incorporated. The transient polarization and the energy balance are also
obtained and interpreted.Comment: Accepted for publication in Phys. Rev. B; 37 pages,17 figure
Charge qubits in semiconductor quantum computer architectures: Tunnel coupling and decoherence
We consider charge qubits based on shallow donor electron states in silicon
and coupled quantum dots in GaAs. Specifically, we study the feasibility of
P charge qubits in Si, focusing on single qubit properties in terms of
tunnel coupling between the two phosphorus donors and qubit decoherence caused
by electron-phonon interaction. By taking into consideration the multi-valley
structure of the Si conduction band, we show that inter-valley quantum
interference has important consequences for single-qubit operations of P
charge qubits. In particular, the valley interference leads to a
tunnel-coupling strength distribution centered around zero. On the other hand,
we find that the Si bandstructure does not dramatically affect the
electron-phonon coupling and consequently, qubit coherence. We also critically
compare charge qubit properties for Si:P and GaAs double quantum dot
quantum computer architectures.Comment: 10 pages, 3 figure
- …
