4,494 research outputs found
Gravitational Lensing & Stellar Dynamics
Strong gravitational lensing and stellar dynamics provide two complementary
and orthogonal constraints on the density profiles of galaxies. Based on
spherically symmetric, scale-free, mass models, it is shown that the
combination of both techniques is powerful in breaking the mass-sheet and
mass-anisotropy degeneracies. Second, observational results are presented from
the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS)
Survey collaborations to illustrate this new methodology in constraining the
dark and stellar density profiles, and mass structure, of early-type galaxies
to redshifts of unity.Comment: 6 pages, 2 figures; Invited contribution in the Proceedings of XXIst
IAP Colloquium, "Mass Profiles & Shapes of Cosmological Structures" (Paris,
4-9 July 2005), eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP
Sciences
Significance of interface anisotropy in laser induced magnetization precession in ferromagnetic metal films
Laser induced ultrafast demagnetization in ferromagnetic metals was
discovered almost 20 years ago, but currently there is still lack of consensus
on the microscopic mechanism responsible for the corresponding transfer of
angular momentum and energy between electron, lattice and spin subsystems. A
distinct, but intrinsically correlated phenomenon occurring on a longer
timescale is the magnetization precession after the ultrafast demagnetization
process, if a magnetic field is applied to tilt the magnetization vector away
from its easy direction, which can be attributed to the change of anisotropy
after laser heating. In an in-plane magnetized Pt/Co/Pt thin film with
perpendicular interface anisotropy, we found excellent agreement between
theoretical prediction with plausible parameters and experimental data measured
using time resolved magneto-optical Kerr effect. This agreement confirms that
the time evolution of the anisotropy field, which is driven by the interaction
between electrons and phonons, determines the magnetization precession
completely. A detailed analysis shows that, even though the whole sample is
magnetized in-plane, the dynamic interface anisotropy field dictates the
initial phase of the magnetization precession, highlighting the significance of
the interface anisotropy field in laser induced magnetization precession.Comment: 11 pages, 2 figure
Femtosecond Demagnetization and Hot Hole Relaxation in Ferromagnetic GaMnAs
We have studied ultrafast photoinduced demagnetization in GaMnAs via
two-color time-resolved magneto-optical Kerr spectroscopy. Below-bandgap
midinfrared pump pulses strongly excite the valence band, while near-infrared
probe pulses reveal sub-picosecond demagnetization that is followed by an
ultrafast (1 ps) partial recovery of the Kerr signal. Through comparison
with InMnAs, we attribute the signal recovery to an ultrafast energy relaxation
of holes. We propose that the dynamical polarization of holes through -
scattering is the source of the observed probe signal. These results support
the physical picture of femtosecond demagnetization proposed earlier for
InMnAs, identifying the critical roles of both energy and spin relaxation of
hot holes.Comment: 7 pages, 6 figure
Gravitational Microlensing Near Caustics I: Folds
We study the local behavior of gravitational lensing near fold catastrophes.
Using a generic form for the lensing map near a fold, we determine the
observable properties of the lensed images, focusing on the case when the
individual images are unresolved, i.e., microlensing. Allowing for images not
associated with the fold, we derive analytic expressions for the photometric
and astrometric behavior near a generic fold caustic. We show how this form
reduces to the more familiar linear caustic, which lenses a nearby source into
two images which have equal magnification, opposite parity, and are equidistant
from the critical curve. In this case, the simplicity and high degree of
symmetry allows for the derivation of semi-analytic expressions for the
photometric and astrometric deviations in the presence of finite sources with
arbitrary surface brightness profiles. We use our results to derive some basic
properties of astrometric microlensing near folds, in particular we predict for
finite sources with uniform and limb darkening profiles, the detailed shape of
the astrometric curve as the source crosses a fold. We find that the
astrometric effects of limb darkening will be difficult to detect with the
currently planned accuracy of the Space Interferometry Mission. We verify our
results by numerically calculating the expected astrometric shift for the
photometrically well-covered Galactic binary lensing event OGLE-1999-BUL-23,
finding excellent agreement with our analytic expressions. Our results can be
applied to any lensing system with fold caustics, including Galactic binary
lenses and quasar microlensing.Comment: 37 pages, 7 figures. Revised version includes an expanded discussion
of applications. Accepted to ApJ, to appear in the August 1, 2002 issue
(v574
Correlation between magnetism and spin-dependent transport in CoFeB alloys
We report a correlation between the spin polarization of the tunneling
electrons (TSP) and the magnetic moment of amorphous CoFeB alloys. Such a
correlation is surprising since the TSP involves s-like electrons close to the
Fermi level (EF), while the magnetic moment mainly arises due to all
d-electrons below EF. We show that probing the s and d-bands individually
provides clear and crucial evidence for such a correlation to exist through s-d
hybridization, and demonstrate the tuneability of the electronic and magnetic
properties of CoFeB alloys.Comment: Accepted for publication in Physical Review Letters. Letter (4 pages)
and Supplementary material (4 pages
Effects of interactions on the relaxation processes in magnetic nanostructures
Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of interactions between nanostructures on the relaxation processes of granular magnetic structures. The results are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on the key material properties of coupled granular nanostructures in good agreement with the experimental data. We show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations
Hot electron driven enhancement of spin-lattice coupling in 4f ferromagnets observed by femtosecond x-ray magnetic circular dichroism
Femtosecond x-ray magnetic circular dichroism was used to study the
time-dependent magnetic moment of 4 fs electrons in the ferromagnets Gd and Tb,
which are known for their different spin-lattice coupling. We observe a
two-step demagnetization with an ultrafast demagnetization time of 750 fs
identical for both systems and slower times which differ sizeably with 40 ps
for Gd and 8 ps for Tb. We conclude that spin-lattice coupling in the
electronically excited state is enhanced up to orders of magnitude compared to
equilibrium.Comment: added reference 24, clarified the meaning of photo-induced,
emphasized that XMCD probes the magnetic moment localized at 4f electron
Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: effect of interface engineering
We analyse the impact of growth conditions on asymmetric magnetic bubble
expansion under in-plane field in ultrathin Pt / Co / Pt films. Specifically,
using sputter deposition we vary the Ar pressure during the growth of the top
Pt layer. This induces a large change in the interfacial structure as evidenced
by a factor three change in the effective perpendicular magnetic anisotropy.
Strikingly, a discrepancy between the current theory for domain-wall
propagation based on a simple domain-wall energy density and our experimental
results is found. This calls for further theoretical development of domain-wall
creep under in-plane fields and varying structural asymmetry.Comment: 16 pages, 3 figure
Ultrafast demagnetization in the sp-d model: a theoretical study
We propose and analyze a theoretical model of ultrafast light-induced
magnetization dynamics in systems of localized spins that are coupled to
carriers' spins by sp-d exchange interaction. A prominent example of a class of
materials falling into this category are ferromagnetic (III,Mn)V
semiconductors, in which ultrafast demagnetization has been recently observed.
In the proposed model light excitation heats up the population of carriers,
taking it out of equilibrium with the localized spins. This triggers the
process of energy and angular momentum exchange between the two spin systems,
which lasts for the duration of the energy relaxation of the carriers. We
derive the Master equation for the density matrix of a localized spin
interacting with the hot carriers and couple it with a phenomenological
treatment of the carrier dynamics. We develop a general theory within the sp-d
model and we apply it to the ferromagnetic semiconductors, taking into account
the valence band structure of these materials. We show that the fast spin
relaxation of the carriers can sustain the flow of polarization between the
localized and itinerant spins leading to significant demagnetization of the
localized spin system, observed in (III,Mn)V materials.Comment: 15 pages, 8 figure
- …
