2,170 research outputs found
The length of esterifying alcohol affects the aggregation properties of chlorosomal bacteriochlorophylls
Chlorosomes, the main light-harvesting complexes of green photosynthetic bacteria, contain bacteriochlorophyll (BChl) molecules in the form of self-assembling aggregates. To study the role of esterifying alcohols in BChl aggregation we have prepared a series of bacteriochlorophyllide c (BChlide c) derivatives differing in the length of the esterifying alcohol (C1, C4, C8 and C12). Their aggregation behavior was studied both in polar (aqueous buffer) and nonpolar (hexane) environments and the esterifying alcohols were found to play an essential role. In aqueous buffer, hydrophobic interactions among esterifying alcohols drive BChlide c derivatives with longer chains into the formation of dimers, while this interaction is weak for BChlides with shorter esterifying alcohols and they remain mainly as monomers. All studied BChlide c derivatives form aggregates in hexane, but the process slows down with longer esterifying alcohols due to competing hydrophobic interactions with hexane molecules. In addition, the effect of the length of the solvent molecules (n-alkanes) was explored for BChl c aggregation. With an increasing length of n-alkane molecules, the hydrophobic interaction with the farnesyl chain becomes stronger, leading to a slower aggregation rate. The results show that the hydrophobic interaction is the driving force for the aggregation in an aqueous environment, while in nonpolar solvents it is the hydrophilic interaction.AVCR-CSIC joint project (Grant nº 2004CZ0001 and 2006CZ0019). Spanish Ministry of Education and Science (BF2004-04914-C02-02/BMC)Peer reviewe
Holographic analysis of diffraction structure factors
We combine the theory of inside-source/inside-detector x-ray fluorescence
holography and Kossel lines/x ray standing waves in kinematic approximation to
directly obtain the phases of the diffraction structure factors. The influence
of Kossel lines and standing waves on holography is also discussed. We obtain
partial phase determination from experimental data obtaining the sign of the
real part of the structure factor for several reciprocal lattice vectors of a
vanadium crystal.Comment: 4 pages, 3 figures, submitte
Level densities and -strength functions in Sm
The level densities and -strength functions of the weakly deformed
Sm and Sm nuclei have been extracted. The temperature versus
excitation energy curve, derived within the framework of the micro canonical
ensemble, shows structures, which we associate with the break up of Cooper
pairs. The nuclear heat capacity is deduced within the framework of both the
micro canonical and the canonical ensemble. We observe negative heat capacity
in the micro canonical ensemble whereas the canonical heat capacity exhibits an
S-shape as function of temperature, both signals of a phase transition. The
structures in the -strength functions are discussed in terms of the
pygmy resonance and the scissors mode built on exited states. The samarium
results are compared with data for the well deformed Dy,
Er and Yb isotopes and with data from
(n,)-experiments and giant dipole resonance studies.Comment: 12 figure
Nuclear Sizes and the Isotope Shift
Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii
are discussed from the nuclear-physics perspective. Interpretation of precise
isotope-shift measurements is formalism dependent, and care must be exercised
in interpreting these results and those obtained from relativistic electron
scattering from nuclei. We strongly advocate that the entire nuclear-charge
operator be used in calculating nuclear-size corrections in atoms, rather than
relegating portions of it to the non-radiative recoil corrections. A
preliminary examination of the intrinsic deuteron radius obtained from
isotope-shift measurements suggests the presence of small meson-exchange
currents (exotic binding contributions of relativistic order) in the nuclear
charge operator, which contribute approximately 1/2%.Comment: 17 pages, latex, 1 figure -- Submitted to Phys. Rev. A -- epsfig.sty
require
Constraints on new interactions from neutron scattering experiments
Constraints for the constants of hypothetical Yukawa-type corrections to the
Newtonian gravitational potential are obtained from analysis of neutron
scattering experiments. Restrictions are obtained for the interaction range
between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic
force microscopy are not sensitive. Experimental limits are obtained also for
non-electromagnetic inverse power law neutron-nucleus potential. Some
possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure
Level density and thermal properties in rare earth nuclei
A convergent method to extract the nuclear level density and the gamma-ray
strength function from primary gamma-ray spectra has been established.
Thermodynamical quantities have been obtained within the microcanonical and
canonical ensemble theory. Structures in the caloric curve and in the heat
capacity curve are interpreted as fingerprints of breaking of Cooper pairs and
quenching of pairing correlations. The strength function can be described using
models and common parameterizations for the E1, M1 and pygmy resonance
strength. However, a significant decrease of the pygmy resonance strength at
finite temperatures has been observed.Comment: 15 pages including 8 figures. Proceedings article for the conference
Nuclear Structure and Related Topics, Dubna, Russia, June 6-10, 200
Monte-Carlo Simulations of Radiation-Induced Activation in a Fast-Neutron and Gamma- Based Cargo Inspection System
An air cargo inspection system combining two nuclear reaction based
techniques, namely Fast-Neutron Resonance Radiography and Dual-Discrete-Energy
Gamma Radiography is currently being developed. This system is expected to
allow detection of standard and improvised explosives as well as special
nuclear materials. An important aspect for the applicability of nuclear
techniques in an airport inspection facility is the inventory and lifetimes of
radioactive isotopes produced by the neutron and gamma radiation inside the
cargo, as well as the dose delivered by these isotopes to people in contact
with the cargo during and following the interrogation procedure. Using MCNPX
and CINDER90 we have calculated the activation levels for several typical
inspection scenarios. One example is the activation of various metal samples
embedded in a cotton-filled container. To validate the simulation results, a
benchmark experiment was performed, in which metal samples were activated by
fast-neutrons in a water-filled glass jar. The induced activity was determined
by analyzing the gamma spectra. Based on the calculated radioactive inventory
in the container, the dose levels due to the induced gamma radiation were
calculated at several distances from the container and in relevant time windows
after the irradiation, in order to evaluate the radiation exposure of the cargo
handling staff, air crew and passengers during flight. The possibility of
remanent long-lived radioactive inventory after cargo is delivered to the
client is also of concern and was evaluated.Comment: Proceedings of FNDA 201
Higher-Order Nuclear-Polarizability Corrections in Atomic Hydrogen
Nuclear-polarizability corrections that go beyond unretarded-dipole
approximation are calculated analytically for hydrogenic (atomic) S-states.
These retardation corrections are evaluated numerically for deuterium and
contribute -0.68 kHz, for a total polarization correction of 18.58(7) kHz. Our
results are in agreement with one previous numerical calculation, and the
retardation corrections completely account for the difference between two
previous calculations. The uncertainty in the deuterium polarizability
correction is substantially reduced. At the level of 0.01 kHz for deuterium,
only three primary nuclear observables contribute: the electric polarizability,
, the paramagnetic susceptibility, , and the third Zemach
moment, . Cartesian multipole decomposition of the virtual
Compton amplitude and its concomitant gauge sum rules are used in the analysis.Comment: 26 pages, latex, 1 figure -- Submitted to Phys. Rev. C -- epsfig.sty
require
Space GlucoseControl system for blood glucose control in intensive care patients:a European multicentre observational study
BACKGROUND: Glycaemia control (GC) remains an important therapeutic goal in critically ill patients. The enhanced Model Predictive Control (eMPC) algorithm, which models the behaviour of blood glucose (BG) and insulin sensitivity in individual ICU patients with variable blood samples, is an effective, clinically proven computer based protocol successfully tested at multiple institutions on medical and surgical patients with different nutritional protocols. eMPC has been integrated into the B.Braun Space GlucoseControl system (SGC), which allows direct data communication between pumps and microprocessor. The present study was undertaken to assess the clinical performance and safety of the SGC for glycaemia control in critically ill patients under routine conditions in different ICU settings and with various nutritional protocols. METHODS: The study endpoints were the percentage of time the BG was within the target range 4.4 – 8.3 mmol.l(−1), the frequency of hypoglycaemic episodes, adherence to the advice of the SGC and BG measurement intervals. BG was monitored, and insulin was given as a continuous infusion according to the advice of the SGC. Nutritional management (enteral, parenteral or both) was carried out at the discretion of each centre. RESULTS: 17 centres from 9 European countries included a total of 508 patients, the median study time was 2.9 (1.9-6.1) days. The median (IQR) time–in–target was 83.0 (68.7-93.1) % of time with the mean proposed measurement interval 2.0 ± 0.5 hours. 99.6 % of the SGC advices on insulin infusion rate were accepted by the user. Only 4 episodes (0.01 % of all BG measurements) of severe hypoglycaemia <2.2 mmol.l(−1) in 4 patients occurred (0.8 %; 95 % CI 0.02-1.6 %). CONCLUSION: Under routine conditions and under different nutritional protocols the Space GlucoseControl system with integrated eMPC algorithm has exhibited its suitability for glycaemia control in critically ill patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT0152366
Nucleon Charge and Magnetization Densities from Sachs Form Factors
Relativistic prescriptions relating Sachs form factors to nucleon charge and
magnetization densities are used to fit recent data for both the proton and the
neutron. The analysis uses expansions in complete radial bases to minimize
model dependence and to estimate the uncertainties in radial densities due to
limitation of the range of momentum transfer. We find that the charge
distribution for the proton is significantly broad than its magnetization
density and that the magnetization density is slightly broader for the neutron
than the proton. The neutron charge form factor is consistent with the Galster
parametrization over the available range of Q^2, but relativistic inversion
produces a softer radial density. Discrete ambiguities in the inversion method
are analyzed in detail. The method of Mitra and Kumari ensures compatibility
with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have
been added and several discussions have been clarified with no significant
changes to the conclusions. Now contains 47 pages including 21 figures and 2
table
- …
