260 research outputs found
The Effect of Electronic Cigarette User Modifications and E-liquid Adulteration on the Particle Size Profile of an Aerosolized Product
Electronic cigarettes (e-cigarettes) are an alternate nicotine delivery system that generate a condensation aerosol to be inhaled by the user. The size of the droplets formed in the aerosol can vary and contributes to drug deposition and ultimate bioavailability in the lung. The growing popularity of e-cigarette products has caused an increase in internet sources promoting the use of drugs other than nicotine (DOTNs) in e-cigarettes. The purpose of this study was to determine the effect of various e-cigarette and e-liquid modifications, such as coil resistance, battery voltage, and glycol and drug formulation, on the aerosol particle size. E-liquids containing 12 mg/mL nicotine prepared in glycol compositions of 100% propylene glycol (PG), 100% vegetable glycerin (VG), or 50:50 PG:VG were aerosolized at three voltages and three coil resistances. Methamphetamine and methadone e-liquids were prepared at 60 mg/mL in 50:50 PG:VG and all e-liquids were aerosolized onto a 10 stage Micro-Orifice Uniform Deposit Impactor. Glycol deposition correlated with drug deposition, and the majority of particles centered between 0.172–0.5 μm in diameter, representing pulmonary deposition. The 100% PG e-liquid produced the largest aerosol particles and the 100% VG and 50:50 PG:VG e-liquids produced ultra-fine particles \u3c0.3 μm. The presence of ultrafine particles indicates that drugs can be aerosolized and reach the pulmonary alveolar regions, highlighting a potential for abuse and risk of overdose with DOTNs aerosolized in an e-cigarette system
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and proinflammatory dysregulation
Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro- inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process
Influenza at the animal-human interface: A review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1)
Factors that trigger human infection with animal influenza virus progressing into a pandemic are poorly understood. Within a project developing an evidence-based risk assessment framework for influenza viruses in animals, we conducted a review of the literature for evidence of human infection with animal influenza viruses by diagnostic methods used. The review covering Medline, Embase, SciSearch and CabAbstracts yielded 6,955 articles, of which we retained 89; for influenza A(H5N1) and A(H7N9), the official case counts of the World Health Organization were used. An additional 30 studies were included by scanning the reference lists. Here, we present the findings for confirmed infections with virological evidence. We found reports of 1,419 naturally infected human cases, of which 648 were associated with avian influenza virus (AIV) A(H5N1), 375 with other AIV subtypes, and 396 with swine influenza virus (SIV). Human cases naturally infected with AIV spanned haemagglutinin subtypes H5, H6, H7, H9 and H10. SIV cases were associated with endemic SIV of H1 and H3 subtype d
Oxidized mitochondrial DNA released after inflammasome activation is a disease biomarker for myelodysplastic syndromes
Flow cytometric analysis of erythroid precursors and mutational signatures of lower risk myelodysplastic syndromes identify responders to erythroid stimulating agents
Neutral tritium gas reduction in the KATRIN differential pumping sections
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to measure the
effective electron anti-neutrino mass with an unprecedented sensitivity of
, using -electrons from tritium decay.
The electrons are guided magnetically by a system of superconducting magnets
through a vacuum beamline from the windowless gaseous tritium source through
differential and cryogenic pumping sections to a high resolution spectrometer
and a segmented silicon pin detector. At the same time tritium gas has to be
prevented from entering the spectrometer. Therefore, the pumping sections have
to reduce the tritium flow by more than 14 orders of magnitude. This paper
describes the measurement of the reduction factor of the differential pumping
section performed with high purity tritium gas during the first measurement
campaigns of the KATRIN experiment. The reduction factor results are compared
with previously performed simulations, as well as the stringent requirements of
the KATRIN experiment.Comment: 19 pages, 4 figures, submitted to Vacuu
Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study
Influenza at the animal-human interface : a review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1)
Factors that trigger human infection with animal influenza virus progressing into a pandemic are poorly understood. Within a project developing an evidence-based risk assessment framework for influenza viruses in animals, we conducted a review of the literature for evidence of human infection with animal influenza viruses by diagnostic methods used. The review covering Medline, Embase, SciSearch and CabAbstracts yielded 6,955 articles, of which we retained 89; for influenza A(H5N1) and A(H7N9), the official case counts of the World Health Organization were used. An additional 30 studies were included by scanning the reference lists. Here, we present the findings for confirmed infections with virological evidence. We found reports of 1,419 naturally infected human cases, of which 648 were associated with avian influenza virus (AIV) A(H5N1), 375 with other AIV subtypes, and 396 with swine influenza virus (SIV). Human cases naturally infected with AIV spanned haemagglutinin subtypes H5, H6, H7, H9 and H10. SIV cases were associated with endemic SIV of H1 and H3 subtype descending from North American and Eurasian SIV lineages and various reassortants thereof. Direct exposure to birds or swine was the most likely source of infection for the cases with available information on exposure
- …
