3,357 research outputs found
Evaluation of Faraday-shielded Stix coils for ion cyclotron resonance heating of a plasma Technical report no. 3
Faraday-shielded Stix coil evaluation including electric field waveform for ion cyclotron resonance heating of plasm
Agronomic and economic evaluation of weed management methods in organic herb and vegetable production systems
Weed management is reported to be a major constraint in organic agriculture. Organic growers also report a lack of information about non-chemical weed control. A series of field trials was conducted in lettuce (Lactuca sativa L.) and echinacea (Echinacea purpurea (L.) Moench) crops to evaluate a range of weed control methods commonly used in organic herb and vegetable production systems. The criteria for evaluating the methods were weed growth, crop yield and cost effectiveness.
Hand weeding, tillage and organic mulches (hay and pelletised paper) were effective to very effective at suppressing weeds. In general, good weed suppression was correlated with good crop yields; however, crop yields were reduced by tillage and paper mulch. Deducting the cost of the weed control method from the gross crop value caused a greater re-ranking of the treatment performance in lettuce than in echinacea. This is partly due to the different growing season lengths and market prices of the two test crops. The most cost effective methods for managing weeds in lettuce were tillage and hand weeding. When weed competition is low, the unweeded control treatment was also cost effective. In echinacea, hand weeding and hay mulch were consistently the most cost effective methods for managing weeds
The Certification of the Mass Concentrations of Aluminium, Selenium and Zinc in Human Serum, BCR-637, BCR-638, BCR-639.
Abstract not availableJRC.D-Institute for Reference Materials and Measurements (Geel
Cosmological implications of the KATRIN experiment
The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put
unprecedented constraints on the absolute mass of the electron neutrino,
\mnue. In this paper we investigate how this information on \mnue will
affect our constraints on cosmological parameters. We consider two scenarios;
one where \mnue=0 (i.e., no detection by KATRIN), and one where
\mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect
estimates of some important cosmological parameters significantly. For example,
the significance of and the inferred value of depend
on the results from the KATRIN experiment.Comment: 13 page
Determination of the Her-2/neu gene amplification status in cytologic breast cancer specimens using automated silver-enhanced in-situ hybridization (SISH)
Silver-enhanced in-situ hybridization (SISH) is an emerging tool for the determination of the Her-2/neu amplification status in breast cancer. SISH is technically comparable to fluorescence in-situ hybridization (FISH) but does not require a fluorescence microscope for its interpretation. Although recent studies on histologic evaluations of SISH are promising, we aimed to evaluate its performance on 71 cytologic breast cancer specimens with the new combined Her-2/Chr17 probe. Her-2/neu status as routinely determined by FISH was available for all patients. We found SISH signals in cytologic cell blocks and smear specimens easy to evaluate in most cases. Small numbers of tumor cells and difficulties in identifying tumor cells in lymphocyte-rich backgrounds were limiting factors. Her-2/neu status, as determined by Her-2/Chr17 SISH, was basically identical to the results of the corresponding FISH. The discrepancies were mainly owing to the heterogeneity of Her-2/neu amplification in the tumor tissue. Interobserver agreement for the SISH evaluation was high (kappa value: 0.972). We conclude that Her-2/Chr17 SISH is a useful and accurate method for the evaluation of the Her-2/neu gene amplification status in cytologic breast cancer specimens, particularly in metastatic breast cancer lesions. The advantages of signal permanency and bright-field microscopic result interpretation make this technique an attractive alternative to the current FISH-based gold standard
Recommended from our members
Impact of Molecular Architecture and Adsorption Density on Adhesion of Mussel-Inspired Surface Primers with Catechol-Cation Synergy.
Marine mussels secrete proteins rich in residues containing catechols and cationic amines that displace hydration layers and adhere to charged surfaces under water via a cooperative binding effect known as catechol-cation synergy. Mussel-inspired adhesives containing paired catechol and cationic functionalities are a promising class of materials for biomedical applications, but few studies address the molecular adhesion mechanism(s) of these materials. To determine whether intramolecular adjacency of these functionalities is necessary for robust adhesion, a suite of siderophore analog surface primers was synthesized with systematic variations in intramolecular spacing between catechol and cationic functionalities. Adhesion measurements conducted with a surface forces apparatus (SFA) allow adhesive failure to be distinguished from cohesive failure and show that the failure mode depends critically on the siderophore analog adsorption density. The adhesion of these molecules to muscovite mica in an aqueous electrolyte solution demonstrates that direct intramolecular adjacency of catechol and cationic functionalities is not necessary for synergistic binding. However, we show that increasing the catechol-cation spacing by incorporating nonbinding domains results in decreased adhesion, which we attribute to a decrease in the density of catechol functionalities. A mechanism for catechol-cation synergy is proposed based on electrostatically driven adsorption and subsequent binding of catechol functionalities. This work should guide the design of new adhesives for binding to charged surfaces in saline environments
The Certification of the Mass Concentrations of Lead and Cadmium in Reconstituted Human Blood. BCR-634, BCR-635, BCR-636.
Abstract not availableJRC.D-Institute for Reference Materials and Measurements (Geel
Spontaneous Magnetisation in a Quantum Wire
An existence of predominant symmetrical spin configuration (spin polarised
phase) and "diluted" density of states (pseudo-gap) in a layer under the Fermi
level in a quantum wire is predicted. The condition of cross-over from
non-polarised phase to polarised one was derived. The transition occurs for
sufficiently low electron density in a wire and is accompanied by an acute
decrease of electron density of states near the Fermi level.It may result in a
corresponding decrease of conductance. A similar effect may exist in a
two-dimensional electron gas.Comment: 8 pages, 1 figur
EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary
We have discovered a doubly eclipsing, bound, quadruple star system in the
field of K2 Campaign 7. EPIC 219217635 is a stellar image with that
contains an eclipsing binary (`EB') with d and a second EB with
d. We have obtained followup radial-velocity (`RV')
spectroscopy observations, adaptive optics imaging, as well as ground-based
photometric observations. From our analysis of all the observations, we derive
good estimates for a number of the system parameters. We conclude that (1) both
binaries are bound in a quadruple star system; (2) a linear trend to the RV
curve of binary A is found over a 2-year interval, corresponding to an
acceleration, cm s; (3) small
irregular variations are seen in the eclipse-timing variations (`ETVs')
detected over the same interval; (4) the orbital separation of the quadruple
system is probably in the range of 8-25 AU; and (5) the orbital planes of the
two binaries must be inclined with respect to each other by at least
25. In addition, we find that binary B is evolved, and the cooler and
currently less massive star has transferred much of its envelope to the
currently more massive star. We have also demonstrated that the system is
sufficiently bright that the eclipses can be followed using small ground-based
telescopes, and that this system may be profitably studied over the next decade
when the outer orbit of the quadruple is expected to manifest itself in the ETV
and/or RV curves.Comment: Accepted for publication in MNRA
MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3
The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last but not least, the binding of CRTC2 to a transcriptional enhancer that interacts with the Cebpd promoter was dramatically decreased upon JAK inhibition. Our data reveal the existence of an unusual functional interplay between STATs and CREB at the onset of adipogenesis through shared CRTC cofactors
- …
