1,218 research outputs found
Twenty Years of Timing SS433
We present observations of the optical ``moving lines'' in spectra of the
Galactic relativistic jet source SS433 spread over a twenty year baseline from
1979 to 1999. The red/blue-shifts of the lines reveal the apparent precession
of the jet axis in SS433, and we present a new determination of the precession
parameters based on these data. We investigate the amplitude and nature of
time- and phase-dependent deviations from the kinematic model for the jet
precession, including an upper limit on any precessional period derivative of
. We also dicuss the implications of these results
for the origins of the relativistic jets in SS433.Comment: 21 pages, including 9 figures. To appear in the Astrophysical Journa
The Effect of Hot Gas in WMAP's First Year Data
By cross-correlating templates constructed from the 2 Micron All Sky Survey
(2MASS) Extended Source (XSC) catalogue with WMAP's first year data, we search
for the thermal Sunyaev-Zel'dovich signature induced by hot gas in the local
Universe. Assuming that galaxies trace the distribution of hot gas, we select
regions on the sky with the largest projected density of galaxies. Under
conservative assumptions on the amplitude of foreground residuals, we find a
temperature decrement of -35 7 K ( detection level,
the highest reported so far) in the 26 square degrees of the sky
containing the largest number of galaxies per solid angle. We show that most of
the reported signal is caused by known galaxy clusters which, when convolved
with the average beam of the WMAP W band channel, subtend a typical angular
size of 20--30 arcmins. Finally, after removing from our analyses all pixels
associated with known optical and X-ray galaxy clusters, we still find a tSZ
decrement of -96 37 K in pixels subtending about 0.8 square
degrees on the sky. Most of this signal is coming from five different cluster
candidates in the Zone of Avoidance (ZoA), present in the Clusters In the ZoA
(CIZA) catalogue. We found no evidence that structures less bound than clusters
contribute to the tSZ signal present in the WMAP data.Comment: 10 pages, 4 figures, matches accepted version in ApJ Letter
Star Formation and AGN in the Core of the Shapley Supercluster: A VLA Survey of A3556, A3558, SC1327-312, SC1329-313, and A3562
The core of the Shapley supercluster (A3556, A3558, SC1327-312, SC1329-313,
and A3562) is an ideal region in which to study the effects of cluster mergers
on the activity of individual galaxies. This paper presents the most
comprehensive radio continuum investigation of the region, relying on a
63-pointing mosaic obtained with the Very Large Array yielding an areal
coverage of nearly 7 square degrees. The mosaic provides a typical sensitivity
of about 80 uJy at a resolution of 16", enabling detection of galaxies with
star formation rates as low as 1 solar mass per year. The radio data are
complemented by optical imaging in B and R, producing a catalog of 210
radio-detected galaxies with m_R <= 17.36 (M_R <= -19). At least 104 of these
radio-detected galaxies are members of the supercluster on the basis of public
velocity measurements. Across the entire core of the supercluster, there
appears to be a significant deficit of radio galaxies at intermediate optical
magnitudes (M_R between -21 and -22). This deficit is offset somewhat by an
increase in the frequency with which brighter galaxies (M_R less than -22) host
radio sources. More dramatic is the highly significant increase in the
probability for fainter galaxies (M_R between -20 and -21) in the vicinity of
A3562 and SC1329-313 to be associated with radio emission. The radio and
optical data for these sources strongly suggest that these active galaxies are
powered by star formation. In conjunction with recent X-ray analysis, this is
interpreted as young starbursts related to the recent merger of SC1329-313 with
A3562 and the rest of the supercluster.Comment: Accepted by AJ; 50 pages, including 16 figures (for full resolution
PDF, see http://mywebpages.comcast.net/nealamiller2/Shapley_pp.pdf
A statistical-mechanical explanation of dark matter halo properties
Cosmological N-body simulations have revealed many empirical relationships of
dark matter halos, yet the physical origin of these halo properties still
remains unclear. On the other hand, the attempts to establish the statistical
mechanics for self-gravitating systems have encountered many formal
difficulties, and little progress has been made for about fifty years. The aim
of this work is to strengthen the validity of the statistical-mechanical
approach we have proposed previously to explain the dark matter halo
properties. By introducing an effective pressure instead of the radial pressure
to construct the specific entropy, we use the entropy principle and proceed in
a similar way as previously to obtain an entropy stationary equation. An
equation of state for equilibrated dark halos is derived from this entropy
stationary equation, by which the dark halo density profiles with finite mass
can be obtained. We also derive the anisotropy parameter and pseudo-phase-space
density profile. All these predictions agree well with numerical simulations in
the outer regions of dark halos. Our work provides further support to the idea
that statistical mechanics for self-gravitating systems is a viable tool for
investigation.Comment: 5 pages, 4 figures, Accepted by A&
Non-stationary Rayleigh-Taylor instability in supernovae ejecta
The Rayleigh-Taylor instability plays an important role in the dynamics of
several astronomical objects, in particular, in supernovae (SN) evolution. In
this paper we develop an analytical approach to study the stability analysis of
spherical expansion of the SN ejecta by using a special transformation in the
co-moving coordinate frame. We first study a non-stationary spherical expansion
of a gas shell under the pressure of a central source. Then we analyze its
stability with respect to a no radial, non spherically symmetric perturbation
of the of the shell. We consider the case where the polytropic constant of the
SN shell is and we examine the evolution of a arbitrary shell
perturbation. The dispersion relation is derived. The growth rate of the
perturbation is found and its temporal and spatial evolution is discussed. The
stability domain depends on the ejecta shell thickness, its acceleration, and
the perturbation wavelength.Comment: 16 page
Breastfeeding, asthma, and allergy : a tale of two cities
BACKGROUND: The effect of breastfeeding duration on subsequent asthma and allergy remains the subject of much controversy.
OBJECTIVE: To investigate whether differences in study design or disease-related exposure modification were the cause of the differences in study findings.
METHOD: The data from two cohorts, the Childhood Asthma Prevention Study (CAPS) from Australia and the Barn Allergi Miljo Stockholm cohort from Sweden, which had reported different findings on the association between breastfeeding and asthma, were combined. For this analysis, the definitions for breastfeeding, asthma, and allergy were harmonized. Subjects were included if they had at least one parent with wheeze or asthma and had a gestational age of more than 36 wks (combined n = 882). The risk of disease-related exposure modification was assessed using survival analysis.
RESULTS: Breastfeeding reduced the risk of asthma at 4/5 and 8 yrs of age in children with a family history of asthma. The effect was stronger in the Swedish cohort. Breastfeeding had no effect on the prevalence of sensitization to inhaled allergens in this cohort with a family history of asthma but was a risk factor for sensitization to cow's milk, peanuts, and eggs in the CAPS cohort at 4/5 yrs and in the combined cohort at 8 yrs. There was no evidence to support the existence of disease-related exposure modification in either cohort.
CONCLUSION: These findings point to the importance of harmonization of features of study design, including subject selection criteria and variable definitions, in resolving epidemiological controversies such as those surrounding the impact of breastfeeding on asthma and allergic sensitization.National Health and Medical Research Council of AustraliaStockholm County CouncilHjärt- och LungfondenThe Swedish Asthma and Allergy AssociationVetenskapsrådetThe Centre for Allergy research Karolinska InstitutetManuscrip
Phase transitions in self-gravitating systems. Self-gravitating fermions and hard spheres models
We discuss the nature of phase transitions in self-gravitating systems both
in the microcanonical and in the canonical ensemble. We avoid the divergence of
the gravitational potential at short distances by considering the case of
self-gravitating fermions and hard spheres models. Three kinds of phase
transitions (of zeroth, first and second order) are evidenced. They separate a
``gaseous'' phase with a smoothly varying distribution of matter from a
``condensed'' phase with a core-halo structure. We propose a simple analytical
model to describe these phase transitions. We determine the value of energy (in
the microcanonical ensemble) and temperature (in the canonical ensemble) at the
transition point and we study their dependance with the degeneracy parameter
(for fermions) or with the size of the particles (for a hard spheres gas).
Scaling laws are obtained analytically in the asymptotic limit of a small short
distance cut-off. Our analytical model captures the essential physics of the
problem and compares remarkably well with the full numerical solutions.Comment: Submitted to Phys. Rev. E. New material adde
Cold collapse and the core catastrophe
We show that a universe dominated by cold dark matter fails to reproduce the
rotation curves of dark matter dominated galaxies, one of the key problems that
it was designed to resolve. We perform numerical simulations of the formation
of dark matter halos, each containing \gsim 10^6 particles and resolved to
0.003 times the virial radius, allowing an accurate comparison with rotation
curve data. A good fit to both galactic and cluster sized halos can be achieved
using the density profile rho(r) \propto [(r/r_s)^1.5(1+(r/r_s)^1.5)]^-1, where
r_s is a scale radius. This profile has a steeper asymptotic slope, rho(r)
\propto r^-1.5, and a sharper turnover than found by lower resolution studies.
The central structure of relaxed halos that form within a hierarchical universe
has a remarkably small scatter (unrelaxed halos would not host disks). We
compare the results with a sample of dark matter dominated, low surface
brightness (LSB) galaxies with circular velocities in the range 100-300 km/s.
The rotation curves of disks within cold dark matter halos rise too steeply to
match these data which require a constant mass density in the central regions.
The same conclusion is reached if we compare the scale free shape of observed
rotation curves with the simulation data. It is important to confirm these
results using stellar rather than HI rotation curves for LSB galaxies. We test
the effects of introducing a cut-off in the power spectrum that may occur in a
universe dominated by warm dark matter. In this case halos form by a monolithic
collapse but the final density profile hardly changes, demonstrating that the
merger history does not play a role in determining the halo structure.Comment: Latex 13 pages, 4 figures. Submitted to MNRAS. High resolution colour
version of figure 4 and other N-body images here:
http://star-www.dur.ac.uk:80/~moore/images
A proposal for ethical research conduct in Madagascar
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. The attached file is the published version of the article
Enhanced inverse bremsstrahlung heating rates in a strong laser field
Test particle studies of electron scattering on ions, in an oscillatory
electromagnetic field have shown that standard theoretical assumptions of small
angle collisions and phase independent orbits are incorrect for electron
trajectories with drift velocities smaller than quiver velocity amplitude. This
leads to significant enhancement of the electron energy gain and the inverse
bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as
Coulomb focusing and correlated collisions of electrons being brought back to
the same ion by the oscillatory field are responsible for large angle, head-on
scattering processes. The statistical importance of these trajectories has been
examined for mono-energetic beam-like, Maxwellian and highly anisotropic
electron distribution functions. A new scaling of the inverse bremsstrahlung
heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure
- …
