34,947 research outputs found

    Higher twists in polarized DIS and the size of the constituent quark

    Full text link
    The spontaneous breaking of chiral symmetry implies the presence of a short-distance scale in the QCD vacuum, which phenomenologically may be associated with the "size" of the constituent quark, rho ~ 0.3 fm. We discuss the role of this scale in the matrix elements of the twist-4 and 3 quark-gluon operators determining the leading power (1/Q^2-) corrections to the moments of the nucleon spin structure functions. We argue that the flavor-nonsinglet twist-4 matrix element, f_2^{u - d}, has a sizable negative value of the order rho^{-2}, due to the presence of sea quarks with virtualities ~ rho^{-2} in the proton wave function. The twist-3 matrix element, d_2, is not related to the scale rho^{-2}. Our arguments support the results of previous calculations of the matrix elements in the instanton vacuum model. We show that this qualitative picture is in agreement with the phenomenological higher-twist correction extracted from an NLO QCD fit to the world data on g_1^p and g_1^n, which include recent data from the Jefferson Lab Hall A and COMPASS experiments. We comment on the implications of the short-distance scale rho for quark-hadron duality and the x-dependence of higher-twist contributions.Comment: 8 pages, 4 figure

    Severe New Limits on the Host Galaxies of Gamma Ray Bursts

    Get PDF
    The nature of Gamma Ray Bursts (GRBs) remains a complete mystery, despite the recent breakthrough discovery of low energy counterparts, although it is now generally believed that at least most GRBs are at cosmological distances. Virtually all proposed cosmological models require bursters to reside in ordinary galaxies. This can be tested by looking inside the smallest GRB error boxes to see if ordinary galaxies appear at the expected brightness levels. This letter reports on an analysis of the contents of 26 of the smallest regions, many from the brightest bursts. These events will have z<0.4z < 0.4 and small uncertainties about luminosity functions, K corrections and galaxy evolutions; whereas the recent events with optical transients are much fainter and hence have high redshifts and grave difficulties in interpretation. This analysis strongly rejects the many models with peak luminosities of 1057photonss110^{57} photons \cdot s^{-1} as deduced from the LogNLogPLogN-LogP curve with no evolution. Indeed, the lower limit on acceptable luminosities is 6×1058photonss16 \times 10^{58} photons \cdot s^{-1}. The only possible solution is to either place GRBs at unexpectedly large distances (with z>5.9z > 5.9 for the faint BATSE bursts) or to require bursters to be far outside any normal host galaxy.Comment: 17 pages, to be published by ApJ

    Geodesic Deviation Equation in Bianchi Cosmologies

    Full text link
    We present the Geodesic Deviation Equation (GDE) for the Friedmann-Robertson-Walker(FRW) universe and we compare it with the equation for Bianchi type I model. We justify consider this cosmological model due to the recent importance the Bianchi Models have as alternative models in cosmology. The main property of these models, solutions of Einstein Field Equations (EFE) is that they are homogeneous as the FRW model but they are not isotropic. We can see this because they have a non-null Weyl tensor in the GDE.Comment: Submitted to Journal of Physics: Conference Series (JPCS), ERE200

    Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches

    Full text link
    We study radiative corrections to the electroweak parameters in the Higgs model with the Y=1 triplet field, which is introduced in the scenario of generating neutrino masses based on the so-called type II seesaw mechanism. In this model, the rho parameter deviates from unity at the tree level. Consequently, the electroweak sector of the model is described by the four input parameters such as αem\alpha_{\text{em}}, GFG_F, mZm_Z and sin2θW\sin^2\theta_W. We calculate the one loop contribution to the W boson mass as well as to the rho parameter in order to clarify the possible mass spectrum of the extra Higgs bosons under the constraint from the electroweak precision data. We find that the hierarchical mass spectrum among H±±H^{\pm\pm}, H±H^{\pm} and AA (or HH) is favored by the precision data especially for the case of mAm_A (mH)>mH+>mH++(\simeq m_H)>m_{H^+}>m_{H^{++}}, where H±±H^{\pm\pm}, H±H^{\pm}, AA and HH are the doubly-charged, singly-charged, CP-odd and CP-even Higgs bosons mainly originated from the triplet field. We also discuss phenomenological consequences of such a mass spectrum with relatively large mass splitting. The decay rate of the Higgs boson decay into two photons is evaluated under the constraint from the electroweak precision data, regarding the recent Higgs boson searches at the CERN LHC.Comment: 17 pages, 23 figures, version published in PRD, title slightly modifie

    The ESO Spectroscopic facility

    Get PDF
    We present the concept of a novel facility dedicated to massively-multiplexed spectroscopy. The telescope has a very wide field Cassegrain focus optimised for fibre feeding. With a Field of View (FoV) of 2.5 degrees diameter and a 11.4m pupil, it will be the largest etendue telescope. The large focal plane can easily host up to 16.000 fibres. In addition, a gravity invariant focus for the central 10 arc-minutes is available to host a giant integral field unit (IFU). The 3 lenses corrector includes an ADC, and has good performance in the 360-1300 nm wavelength range. The top level science requirements were developed by a dedicated ESO working group, and one of the primary cases is high resolution spectroscopy of GAIA stars and, in general, how our Galaxy formed and evolves. The facility will therefore be equipped with both, high and low resolution spectrographs. We stress the importance of developing the telescope and instrument designs simultaneously. The most relevant R\&D aspect is also briefly discussed.Comment: 6 pages 4 figures , presented at IAU Symposium 334 "rediscovering our galaxy

    Spectroscopic follow up of arclets in AC114 with the VLT

    Get PDF
    We present the first results on the VLT/FORS-1 spectroscopic survey of amplified sources and multiple images in the lensing cluster AC114. Background sources were selected in the cluster core, close to the critical lines, using photometric redshifts combined with lensing inversion criteria. Spectroscopic results are given, together with a brief summary of the properties of some of these high-z galaxies.Comment: 4pages. To appear in the Proceedings of the XXth Moriond Astrophysics Meeting "Cosmological Physics with Gravitational Lensing", eds. J.-P. Kneib, Y. Mellier, M. Moniez and J. Tran Thanh Van, Les Arcs, France, March 11th-18th 200

    Gravito-magnetic amplification in cosmology

    Full text link
    Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge-invariant. We show that the nature and the outcome of the gravito-magnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B-field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B-fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravito-magnetic interaction and discuss its potential implications.Comment: Typos corrected, clarifications added, published in PR

    Telerobotics: A simulation facility for university research

    Get PDF
    An experimental telerobotics (TR) simulation suitable for studying human operator (H.O.) performance is described. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the H.O. can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments. An introduced communication delay was found to produce decrease in performance. In considerable part, this difficulty could be compensated for by preview control information. That neurological control of normal human movement contains a data period of 0.2 second may relate to this robustness of H.O. control to delay. The Ames-Berkeley enhanced perspective display was utilized in conjunction with an experimental helmet mounted display system (HMD) that provided stereoscopic enhanced views

    Space, Time and Color in Hadron Production Via e+e- -> Z0 and e+e- -> W+W-

    Get PDF
    The time-evolution of jets in hadronic e+e- events at LEP is investigated in both position- and momentum-space, with emphasis on effects due to color flow and particle correlations. We address dynamical aspects of the four simultanously-evolving, cross-talking parton cascades that appear in the reaction e+e- -> gamma/Z0 -> W+W- -> q1 q~2 q3 q~4, and compare with the familiar two-parton cascades in e+e- -> Z0 -> q1 q~2. We use a QCD statistical transport approach, in which the multiparticle final state is treated as an evolving mixture of partons and hadrons, whose proportions are controlled by their local space-time geography via standard perturbative QCD parton shower evolution and a phenomenological model for non-perturbative parton-cluster formation followed by cluster decays into hadrons. Our numerical simulations exhibit a characteristic `inside-outside' evolution simultanously in position and momentum space. We compare three different model treatments of color flow, and find large effects due to cluster formation by the combination of partons from different W parents. In particular, we find in our preferred model a shift of several hundred MeV in the apparent mass of the W, which is considerably larger than in previous model calculations. This suggests that the determination of the W mass at LEP2 may turn out to be a sensitive probe of spatial correlations and hadronization dynamics.Comment: 52 pages, latex, 18 figures as uu-encoded postscript fil
    corecore