107 research outputs found
Moving boundary approximation for curved streamer ionization fronts: Solvability analysis
The minimal density model for negative streamer ionization fronts is
investigated. An earlier moving boundary approximation for this model consisted
of a "kinetic undercooling" type boundary condition in a Laplacian growth
problem of Hele-Shaw type. Here we derive a curvature correction to the moving
boundary approximation that resembles surface tension. The calculation is based
on solvability analysis with unconventional features, namely, there are three
relevant zero modes of the adjoint operator, one of them diverging;
furthermore, the inner/outer matching ahead of the front has to be performed on
a line rather than on an extended region; and the whole calculation can be
performed analytically. The analysis reveals a relation between the fields
ahead and behind a slowly evolving curved front, the curvature and the
generated conductivity. This relation forces us to give up the ideal
conductivity approximation, and we suggest to replace it by a constant
conductivity approximation. This implies that the electric potential in the
streamer interior is no longer constant but solves a Laplace equation; this
leads to a Muskat-type problem.Comment: 22 pages, 6 figure
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
Logarithmic diffusion and porous media equations: a unified description
In this work we present the logarithmic diffusion equation as a limit case
when the index that characterizes a nonlinear Fokker-Planck equation, in its
diffusive term, goes to zero. A linear drift and a source term are considered
in this equation. Its solution has a lorentzian form, consequently this
equation characterizes a super diffusion like a L\'evy kind. In addition is
obtained an equation that unifies the porous media and the logarithmic
diffusion equations, including a generalized diffusion equation in fractal
dimension. This unification is performed in the nonextensive thermostatistics
context and increases the possibilities about the description of anomalous
diffusive processes.Comment: 5 pages. To appear in Phys. Rev.
Understanding the Relationships between Tourists’ Emotional Experiences, Perceived Overall Image, Satisfaction, and Intention to Recommend
The purpose of this study is to empirically test an integrative model linking tourists' emotional experiences, perceived overall image, satisfaction, and intention to recommend. The model was tested using data collected from domestic tourists visiting Sardinia, Italy. Results show that tourists' emotional experiences act as antecedents of perceived overall image and satisfaction evaluations. In addition, overall image has a positive influence on tourist satisfaction and intention to recommend. The study expands current theorizations by examining the merits of emotions in tourist behavior models. From a practical perspective, the study offers important implications for destination marketers
Framework Report: The AIDS Accountability Workplace Scorecard, September 2011
The aim of the AIDS Accountability Workplace Scorecard is to improve HIV and AIDS workplace programmes in
the countries and sectors most affected by the disease, and improve the health of employees, their families
and communities. Through this initiative we will: / 1. Provide tools for HIV and AIDS workplace programme monitoring and evaluation
AAI has developed scorecard tools for small, medium and large workplaces, which can be used to assess a
global, regional or national HIV and AIDS programme or interventions at a specific workplace site. The
scorecards can serve as both internal monitoring and evaluation tools and as assessments to present to
stakeholders within and outside the organization. / 2. Publish annual Rankings of HIV and AIDS Workplace Programmes
Scorecard users who wish to receive a ranking analysis and recommendations for how to improve their
programmes can submit their scorecards to AAI. AAI ‘s ranking analysis will allow users to compare their
performance with others and over time also measure their own progress. Respondents will be encouraged to
publish their ranking in AAI’s yearly Ranking Reports. / 3. Share good practice
The knowledge and good practices generated through the published rankings will be used to stimulate
improved HIV and AIDS Workplace Programmes worldwide. Large networks of companies, trade union
confederations, and national and international organizations can use the scorecard as a common framework
for monitoring and evaluation of workplace programmes
Visual adaptation and face perception
The appearance of faces can be strongly affected by the characteristics of faces viewed previously. These perceptual after-effects reflect processes of sensory adaptation that are found throughout the visual system, but which have been considered only relatively recently in the context of higher level perceptual judgements. In this review, we explore the consequences of adaptation for human face perception, and the implications of adaptation for understanding the neural-coding schemes underlying the visual representation of faces. The properties of face after-effects suggest that they, in part, reflect response changes at high and possibly face-specific levels of visual processing. Yet, the form of the after-effects and the norm-based codes that they point to show many parallels with the adaptations and functional organization that are thought to underlie the encoding of perceptual attributes like colour. The nature and basis for human colour vision have been studied extensively, and we draw on ideas and principles that have been developed to account for norms and normalization in colour vision to consider potential similarities and differences in the representation and adaptation of faces
The Biomolecular Interaction Network Database and related tools 2005 update
The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machine-readable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues
The neutron and its role in cosmology and particle physics
Experiments with cold and ultracold neutrons have reached a level of
precision such that problems far beyond the scale of the present Standard Model
of particle physics become accessible to experimental investigation. Due to the
close links between particle physics and cosmology, these studies also permit a
deep look into the very first instances of our universe. First addressed in
this article, both in theory and experiment, is the problem of baryogenesis ...
The question how baryogenesis could have happened is open to experimental
tests, and it turns out that this problem can be curbed by the very stringent
limits on an electric dipole moment of the neutron, a quantity that also has
deep implications for particle physics. Then we discuss the recent spectacular
observation of neutron quantization in the earth's gravitational field and of
resonance transitions between such gravitational energy states. These
measurements, together with new evaluations of neutron scattering data, set new
constraints on deviations from Newton's gravitational law at the picometer
scale. Such deviations are predicted in modern theories with extra-dimensions
that propose unification of the Planck scale with the scale of the Standard
Model ... Another main topic is the weak-interaction parameters in various
fields of physics and astrophysics that must all be derived from measured
neutron decay data. Up to now, about 10 different neutron decay observables
have been measured, much more than needed in the electroweak Standard Model.
This allows various precise tests for new physics beyond the Standard Model,
competing with or surpassing similar tests at high-energy. The review ends with
a discussion of neutron and nuclear data required in the synthesis of the
elements during the "first three minutes" and later on in stellar
nucleosynthesis.Comment: 91 pages, 30 figures, accepted by Reviews of Modern Physic
- …
