7,903 research outputs found

    The Terzan 5 puzzle: discovery of a third, metal-poor component

    Full text link
    We report on the discovery of 3 metal-poor giant stars in Terzan 5, a complex stellar system in the the Galactic bulge, known to have two populations at [Fe/H]=-0.25 and +0.3. For these 3 stars we present new echelle spectra obtained with NIRSPEC at Keck II, which confirm their radial velocity membership and provide average [Fe/H]=-0.79 dex iron abundance and [alpha/Fe]=+0.36 dex enhancement. This new population extends the metallicity range of Terzan~5 0.5 dex more metal poor, and it has properties consistent with having formed from a gas polluted by core collapse supernovae.Comment: Accepted for publication on ApJ Lette

    Detailed Abundances for the Old Population near the Galactic Center: I. Metallicity distribution of the Nuclear Star Cluster

    Get PDF
    We report the first high spectral resolution study of 17 M giants kinematically confirmed to lie within a few parsecs of the Galactic Center, using R=24,000 spectroscopy from Keck/NIRSPEC and a new linelist for the infrared K band. We consider their luminosities and kinematics, which classify these stars as members of the older stellar population and the central cluster. We find a median metallicity of =-0.16 and a large spread from approximately -0.3 to +0.3 (quartiles). We find that the highest metallicities are [Fe/H]<+0.6, with most of the stars being at or below the Solar iron abundance. The abundances and the abundance distribution strongly resembles that of the Galactic bulge rather than disk or halo; in our small sample we find no statistical evidence for a dependence of velocity dispersion on metallicity.Comment: 18 pages, 14 figures, accepted for publication in A

    Evidence against anomalous compositions for giants in the Galactic Nuclear Star Cluster

    Get PDF
    Very strong Sc I lines have been found recently in cool M giants in the Nuclear Star Cluster in the Galactic Center. Interpreting these as anomalously high scandium abundances in the Galactic Center would imply a unique enhancement signature and chemical evolution history for nuclear star clusters, and a potential test for models of chemical enrichment in these objects. We present high resolution K-band spectra (NIRSPEC/Keck II) of cool M giants situated in the solar neighborhood and compare them with spectra of M giants in the Nuclear Star Cluster. We clearly identify strong Sc I lines in our solar neighborhood sample as well as in the Nuclear Star Cluster sample. The strong Sc I lines in M giants are therefore not unique to stars in the Nuclear Star Cluster and we argue that the strong lines are a property of the line formation process that currently escapes accurate theoretical modeling. We further conclude that for giant stars with effective temperatures below approximately 3800 K these Sc I lines should not be used for deriving the scandium abundances in any astrophysical environment until we better understand how these lines are formed. We also discuss the lines of vanadium, titanium, and yttrium identified in the spectra, which demonstrate a similar striking increase in strength below 3500 K effective temperature.Comment: 11 pages, 6 figures, accepted for publication in Ap

    Proper motions in Terzan 5: membership of the multi-iron sub-populations and first constrain to the orbit

    Get PDF
    By exploiting two sets of high-resolution images obtained with HST ACS/WFC over a baseline of ~10 years we have measured relative proper motions of ~70,000 stars in the stellar system Terzan 5. The results confirm the membership of the three sub-populations with different iron abudances discovered in the system. The orbit of the system has been derived from a first estimate of its absolute proper motion, obtained by using bulge stars as reference. The results of the integration of this orbit within an axisymmetric Galactic model exclude any external accretion origin for this cluster. Terzan 5 is known to have chemistry similar to the Galactic bulge; our findings support a kinematic link between the cluster and the bulge, further strengthening the possibility that Terzan 5 is the fossil remnant of one of the pristine clumps that originated the bulge.Comment: 25 pages, 14 figures, accepted for publication by Ap

    FTIR spectroscopic imaging and mapping with correcting lenses for studies of biological cells and tissues

    Get PDF
    Histopathology of tissue samples is used to determine the progression of cancer usually by staining and visual analysis. It is recognised that disease progression from healthy tissue to cancerous is accompanied by spectral signature changes in the mid-infrared range. In this work, FTIR spectroscopic imaging in transmission mode using a focal plane array (96 × 96 pixels) has been applied to the characterisation of Barrett's oesophageal adenocarcinoma. To correct optical aberrations, infrared transparent lenses were used of the same material (CaF2) as the slide on which biopsies were fixed. The lenses acted as an immersion objective, reducing scattering and improving spatial resolution. A novel mapping approach using a sliding lens is presented where spectral images obtained with added lenses are stitched together such that the dataset contained a representative section of the oesophageal tissue. Images were also acquired in transmission mode using high-magnification optics for enhanced spatial resolution, as well as with a germanium micro-ATR objective. The reduction of scattering was assessed using k-means clustering. The same tissue section map, which contained a region of high grade dysplasia, was analysed using hierarchical clustering analysis. A reduction of the trough at 1077 cm−1 in the second derivative spectra was identified as an indicator of high grade dysplasia. In addition, the spatial resolution obtained with the lens using high-magnification optics was assessed by measurements of a sharp interface of polymer laminate, which was also compared with that achieved with micro ATR-FTIR imaging. In transmission mode using the lens, it was determined to be 8.5 μm and using micro-ATR imaging, the resolution was 3 μm for the band at a wavelength of ca. 3 μm. The spatial resolution was also assessed with and without the added lens, in normal and high-magnification modes using a USAF target. Spectroscopic images of cells in transmission mode using two lenses are also presented, which are necessary for correcting chromatic aberration and refraction in both the condenser and objective. The use of lenses is shown to be necessary for obtaining high-quality spectroscopic images of cells in transmission mode and proves the applicability of the pseudo hemisphere approach for this and other microfluidic systems

    Variable stars in Terzan 5: additional evidence of multi-age and multi-iron stellar populations

    Get PDF
    Terzan 5 is a complex stellar system in the Galactic bulge, harboring stellar populations with very different iron content ({\Delta}[Fe/H] ~1 dex) and with ages differing by several Gyrs. Here we present an investigation of its variable stars. We report on the discovery and characterization of three RR Lyrae stars. For these newly discovered RR Lyrae and for six Miras of known periods we provide radial velocity and chemical abundances from spectra acquired with X-SHOOTER at the VLT. We find that the three RR Lyrae and the three short period Miras (P<300 d) have radial velocity consistent with being Terzan 5 members. They have sub-solar iron abundances and enhanced [{\alpha}/Fe], well matching the age and abundance patterns of the 12 Gyr metal-poor stellar populations of Terzan 5. Only one, out of the three long period (P>300 d) Miras analyzed in this study, has a radial velocity consistent with being Terzan 5 member. Its super-solar iron abundance and solar-scaled [{\alpha}/Fe] nicely match the chemical properties of the metal rich stellar population of Terzan 5 and its derived mass nicely agrees with being several Gyrs younger than the short period Miras. This young variable is an additional proof of the surprising young sub-population discovered in Terzan 5.Comment: 20 pages, 4 figures, in press on the Ap

    Nonsingular, big-bounce cosmology from spinor-torsion coupling

    Get PDF
    The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.Comment: 7 pages; published versio

    Kinematic classifications of local interacting galaxies: implications for the merger/disk classifications at high-z

    Get PDF
    The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. The kinematic properties of galaxies as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of galaxy morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the WiFeS observations of these local (U)LIRGs to z=1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ~900 pc. Using both kinemetry-based and visual classifications, we find that the reliability of kinematic classification shows a strong trend with the interaction stage of galaxies. Mergers with two nuclei and tidal tails have the most distinct kinematic properties compared to isolated disks, whereas a significant population of the interacting disks and merger remnants are indistinguishable from isolated disks. The high fraction of late-stage mergers showing disk-like kinematics reflects the complexity of the dynamics during galaxy interactions. However, the exact fractions of misidentified disks and mergers depend on the definition of kinematic asymmetries and the classification threshold when using kinemetry-based classifications. Our results suggest that additional indicators such as morphologies traced by stars or molecular gas are required to further constrain the merger/disk classifications at high-z.Comment: 16 pages, 5 figures, ApJ accepte

    Remarks upon the mass oscillation formulas

    Full text link
    The standard formula for mass oscillations is often based upon the approximation tLt \approx L and the hypotheses that neutrinos have been produced with a definite momentum pp or, alternatively, with definite energy EE. This represents an inconsistent scenario and gives an unjustified reduction by a factor of two in the mass oscillation formulas. Such an ambiguity has been a matter of speculations and mistakes in discussing flavour oscillations. We present a series of results and show how the problem of the factor two in the oscillation length is not a consequence of gedanken experiments, i.e. oscillations in time. The common velocity scenario yields the maximum simplicity.Comment: 9 pages, AMS-Te

    High resolution infrared spectra of bulge globular clusters: Liller~1 and NGC 6553

    Get PDF
    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8um for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3 +/- 0.2 and [O/H]=+0.3 +/- 0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a sceanrio in which the clusters formed early, with rapid enrichment. We have dificulty achieveing a good fit to the spectrum of NGC 6553 using either the low or the high values recently reported in the literature, unless unusually large, or no alpha-element enhancements are adopted, respectively.Comment: To appear in the Astronomical Journal, March 200
    corecore