1,009 research outputs found
Exact solutions for a mean-field Abelian sandpile
We introduce a model for a sandpile, with N sites, critical height N and each
site connected to every other site. It is thus a mean-field model in the
spin-glass sense. We find an exact solution for the steady state probability
distribution of avalanche sizes, and discuss its asymptotics for large N.Comment: 10 pages, LaTe
Novel Quenched Disorder Fixed Point in a Two-Temperature Lattice Gas
We investigate the effects of quenched randomness on the universal properties
of a two-temperature lattice gas. The disorder modifies the dynamical
transition rates of the system in an anisotropic fashion, giving rise to a new
fixed point. We determine the associated scaling form of the structure factor,
quoting critical exponents to two-loop order in an expansion around the upper
critical dimension d. The close relationship with another quenched
disorder fixed point, discovered recently in this model, is discussed.Comment: 11 pages, no figures, RevTe
Structure of wavefunctions in (1+2)-body random matrix ensembles
Abstrtact: Random matrix ensembles defined by a mean-field one-body plus a
chaos generating random two-body interaction (called embedded ensembles of
(1+2)-body interactions) predict for wavefunctions, in the chaotic domain, an
essentially one parameter Gaussian forms for the energy dependence of the
number of principal components NPC and the localization length {\boldmath
l}_H (defined by information entropy), which are two important measures of
chaos in finite interacting many particle systems. Numerical embedded ensemble
calculations and nuclear shell model results, for NPC and {\boldmath l}_H,
are compared with the theory. These analysis clearly point out that for
realistic finite interacting many particle systems, in the chaotic domain,
wavefunction structure is given by (1+2)-body embedded random matrix ensembles.Comment: 20 pages, 3 figures (1a-c, 2a-b, 3a-c), prepared for the invited talk
given in the international conference on `Perspectives in Theoretical
Physics', held at Physical Research Laboratory, Ahmedabad during January
8-12, 200
Stability of a Nonequilibrium Interface in a Driven Phase Segregating System
We investigate the dynamics of a nonequilibrium interface between coexisting
phases in a system described by a Cahn-Hilliard equation with an additional
driving term. By means of a matched asymptotic expansion we derive equations
for the interface motion. A linear stability analysis of these equations
results in a condition for the stability of a flat interface. We find that the
stability properties of a flat interface depend on the structure of the driving
term in the original equation.Comment: 14 pages Latex, 1 postscript-figur
Learning masculinities in a Japanese high school rugby club
This paper draws on research conducted on a Tokyo high school rugby club to explore diversity in the masculinities formed through membership in the club. Based on the premise that particular forms of masculinity are expressed and learnt through ways of playing (game style) and the attendant regimes of training, it examines the expression and learning of masculinities at three analytic levels. It identifies a hegemonic, culture-specific form of masculinity operating in Japanese high school rugby, a class-influenced variation of it at the institutional level of the school and, by further tightening its analytic focus, further variation at an individual level. In doing so this paper highlights the ways in which diversity in the masculinities constructed through contact sports can be obfuscated by a reductionist view of there being only one, universal hegemonic patterns of masculinity
Top-down control is not lost in the attentional blink: evidence from intact endogenous cuing.
The attentional blink (AB) refers to the finding that performance on the second of two targets (T1 and T2) is impaired when the targets are presented at a target onset asynchrony (TOA) of less than 500 ms. One account of the AB assumes that the processing load of T1 leads to a loss of top-down control over stimulus selection. The present study tested this account by examining whether an endogenous spatial cue that indicates the location of a following T2 can facilitate T2 report even when the cue and T2 occur within the time window of the AB. Results from three experiments showed that endogenous cuing had a significant effect on T2 report, both during and outside of the AB; this cuing effect was modulated by both the cue-target onset asynchrony and by cue validity, while it was invariant to the AB. These results suggest that top-down control over target selection is not lost during the AB. © 2007 Springer-Verlag
Relapse of the lower incisors post orthodontic treatment : when is re-treatment perceived as clinically necessary, according to non-dental and dental professionals?
Review of the k-Body Embedded Ensembles of Gaussian Random Matrices
The embedded ensembles were introduced by Mon and French as physically more
plausible stochastic models of many--body systems governed by one--and
two--body interactions than provided by standard random--matrix theory. We
review several approaches aimed at determining the spectral density, the
spectral fluctuation properties, and the ergodic properties of these ensembles:
moments methods, numerical simulations, the replica trick, the eigenvector
decomposition of the matrix of second moments and supersymmetry, the binary
correlation approximation, and the study of correlations between matrix
elements.Comment: Final version. 29 pages, 4 ps figures, uses iopart.st
Tritium supply and use: a key issue for the development of nuclear fusion energy
Full power operation of the International Thermonuclear Experimental Reactor (ITER) has been delayed and will now begin in 2035. Delays to the ITER schedule may affect the availability of tritium for subsequent fusion devices, as the global CANDU-type fission reactor fleet begins to phase out over the coming decades. This study provides an up to date account of future tritium availability by incorporating recent uncertainties over the life extension of the global CANDU fleet, as well as considering the potential impact of tritium demand by other fusion efforts. Despite the delays, our projections suggest that CANDU tritium remains sufficient to support the full operation of ITER. However, whether there is tritium available for a DEMO reactor following ITER is largely uncertain, and is subject to numerous uncontrollable externalities. Further tritium demand may come from any number of private sector “compact fusion” start-ups which have emerged in recent years, all of which aim to accelerate the development of fusion energy. If the associated technical challenges can be overcome, compact fusion programmes have the opportunity to use tritium over the next two decades whilst it is readily available, and before full power DT operation on ITER starts in 2035. Assuming a similar level of performance is achievable, a compact fusion development programme, using smaller reactors operating at lower fusion power, would require smaller quantities of tritium than the ITER programme, leaving sufficient tritium available for multiple concepts to be developed concurrently. The development of concurrent fusion concepts increases the chances of success, as it spreads the risk of failure. Additionally, if full tritium breeding capability is not expected to be demonstrated in DEMO until after 2050, an opportunity exists for compact fusion programmes to incorporate tritium breeding technology in nearer-term devices. DD start-up, which avoids the need for external tritium for reactor start-up, is dependent upon full tritium breeding capability, and may be essential for large-scale commercial roll-out of fusion energy. As such, from the standpoint of availability and use of external tritium, a compact route to fusion energy may be more advantageous, as it avoids longer-term complications and uncertainties in the future supply of tritium
Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study
Hemoglobin exhibits allosteric structural changes upon ligand binding due to
the dynamic interactions between the ligand binding sites, the amino acids
residues and some other solutes present under physiological conditions. In the
present study, the dynamical and quaternary structural changes occurring in two
unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures
of adult human hemoglobin were investigated with molecular dynamics. It is
shown that, in the sub-microsecond time scale, there is no marked difference in
the global dynamics of the amino acids residues in both the oxy- and the deoxy-
forms of the individual structures. In addition, the R, R2 are relatively
stable and do not present quaternary conformational changes within the time
scale of our simulations while the T structure is dynamically more flexible and
exhibited the T\rightarrow R quaternary conformational transition, which is
propagated by the relative rotation of the residues at the {\alpha}1{\beta}2
and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B
DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ
- …
