3,619 research outputs found
The effect of a particle travelling through a laminar boundary layer on transition
This study investigates how a particle travelling through an initially laminar boundary layer can lead to its breakdown to turbulence With increasing kerosene costs and an awareness of limited available oil reserves, laminar flow technologies are again being considered to realize the necessary efficiency increases of aircraft, and more detailed information on the operational issues is required. The adverse impact of flying through cirrus clouds has been simplified to the effect of a single particle on a laminar boundary layer over a zero-pressure gradient flat plate. First results indicate that the critical values could be substantially smaller than initially assumed
A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles
We present a Lattice-Boltzmann method for simulating self-propelling (active)
colloidal particles in two-dimensions. Active particles with symmetric and
asymmetric force distribution on its surface are considered. The velocity field
generated by a single active particle, changing its orientation randomly, and
the different time scales involved are characterized in detail. The steady
state speed distribution in the fluid, resulting from the activity, is shown to
deviate considerably from the equilibrium distribution.Comment: 8 pages, 13 figure
A new model for simulating colloidal dynamics
We present a new hybrid lattice-Boltzmann and Langevin molecular dynamics
scheme for simulating the dynamics of suspensions of spherical colloidal
particles. The solvent is modeled on the level of the lattice-Boltzmann method
while the molecular dynamics is done for the solute. The coupling between the
two is implemented through a frictional force acting both on the solvent and on
the solute, which depends on the relative velocity. A spherical colloidal
particle is represented by interaction sites at its surface. We demonstrate
that this scheme quantitatively reproduces the translational and rotational
diffusion of a neutral spherical particle in a liquid and show preliminary
results for a charged spherical particle. We argue that this method is
especially advantageous in the case of charged colloids.Comment: For a movie click on the link below Fig
Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results
We consider electrophoresis of a single charged colloidal particle in a
finite box with periodic boundary conditions, where added counterions and salt
ions ensure charge neutrality. A systematic rescaling of the electrokinetic
equations allows us to identify a minimum set of suitable dimensionless
parameters, which, within this theoretical framework, determine the reduced
electrophoretic mobility. It turns out that the salt-free case can, on the Mean
Field level, be described in terms of just three parameters. A fourth
parameter, which had previously been identified on the basis of straightforward
dimensional analysis, can only be important beyond Mean Field. More complicated
behavior is expected to arise when further ionic species are added. However,
for a certain parameter regime, we can demonstrate that the salt-free case can
be mapped onto a corresponding system containing additional salt. The
Green-Kubo formula for the electrophoretic mobility is derived, and its
usefulness demonstrated by simulation data. Finally, we report on
finite-element solutions of the electrokinetic equations, using the commercial
software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on
occasion of the CODEF 2008 conferenc
CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483
CO isotopes are able to probe the different components in protostellar
clouds. These components, core, envelope and outflow have distinct physical
conditions and sometimes more than one component contributes to the observed
line profile. In this study we determine how CO isotope abundances are altered
by the physical conditions in the different components. We use a 3D molecular
line transport code to simulate the emission of four CO isotopomers, 12CO
J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483,
which contains a cold quiescent core, an infalling envelope and a clear
outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line
observations with the inclusion of freeze-out, a density profile and infall.
Our model profiles of 12CO and 13CO have a large linewidth due to a high
velocity jet. These profiles replicate the process of more abundant material
being susceptible to a jet. C18O and C17O do not display such a large linewidth
as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table
Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study
We study single-chain motion in semidilute solutions of polymers of length N
= 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm.
The crossover length of the transition from Zimm (short lengths and times) to
Rouse dynamics (larger scales) is proportional to the static screening length.
The crossover time is the corresponding Zimm time. Our data indicate Zimm
behavior at large lengths but short times. There is no hydrodynamic screening
until the chains feel constraints, after which they resist the flow:
"Incomplete screening" occurs in the time domain.Comment: 3 figure
Optical Detection of a Single Nuclear Spin
We propose a method to optically detect the spin state of a 31-P nucleus
embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the
31-P neutral-donor ground state can be resolved via a direct frequency
discrimination measurement of the 31-P bound exciton photoluminescence using
single photon detectors. The measurement time is expected to be shorter than
the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure
Studying DNA methylation changes of CpG islands in different stages of prostate cancer by pyrosequencing
Abstract only availableProstate cancer is one of the most common forms of cancer in men. Our lab is currently investigating changes in DNA methylation that occur during cancer progression, and in response to the soy phytoestrogen genistein treatment. We analyze genome-wide methylation differences by using the mouse DMH (mouse-Differential Methylation Hybridization) assay, a form of microarray. We are specifically looking at broad sets of CpG islands, areas rich in cytosine-guanine dinucleotides, that are subject to epigenetic modifications. The hypermethylation of CpG islands is correlated with the silencing of a gene while hypomethylation is correlated with a gene being actively transcribed. We were looking for potential new oncogenes or tumor suppressors. To study these genes we have a mouse model called TRAMP (TRansgenic Adenocarcinoma of the Mouse Prostate), which is a good model to study the progression of prostate cancer and metastasis because it is similar to human prostate cancer. We are using double transgenic mice that are WT or KO for the transcription factor estrogen receptor alpha, on a TRAMP background. The removal of ERα has been correlated with DNA methylation changes. These methylation changes showed up in our microarray screen that led us to find a set of genes that were differentially methylated across cancer progression. We selected one gene: Kinesin superfamily protein 9 (K3_E17) which has been shown on our microarrays to be methylated in well differentiated carcinoma and unmethylated in hyperplasia and poorly differentiated carcinoma. To confirm the methylation status we performed pyrosequencing, a new method to specifically study short sequences of DNA for methylation at specific CG sites. Our hypothesis is that in well differentiated carcinoma Kinesin 9 is hypermethylated, which will correlate with this gene being turned off. This would mean that Kinesin 9 might be acting as a tumor suppressor.Life Sciences Undergraduate Research Opportunity Progra
On the signature of tensile blobs in the scattering function of a stretched polymer
We present Monte Carlo data for a linear chain with excluded volume subjected
to a uniform stretching. Simulation of long chains (up to 6000 beads) at high
stretching allows us to observe the signature of tensile blobs as a crossover
in the scaling behavior of the chain scattering function for wave vectors
perpendicular to stretching. These results and corresponding ones in the
stretching direction allow us to verify for the first time Pincus prediction on
scaling inside blobs. Outside blobs, the scattering function is well described
by the Debye function for a stretched ideal chain.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
Notions and subnotions in information structure
Three dimensions can be distinguished in a cross-linguistic account of information structure. First, there is the definition of the focus constituent, the part of the linguistic expression which is subject to some focus meaning. Second and third, there are the focus meanings and the array of structural devices that encode them. In a given language, the expression of focus is facilitated as well as constrained by the grammar within which the focus devices operate. The prevalence of focus ambiguity, the structural inability to make focus distinctions, will thus vary across languages, and within a language, across focus meanings
- …
