295 research outputs found
Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes
The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years[superscript 1, 2, 3]. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes owing to genetic decay[superscript 4, 5]. This evolutionary decay was driven by a series of five ‘stratification’ events. Each event suppressed X–Y crossing over within a chromosome segment or ‘stratum’, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over[superscript 2, 6]. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome[superscript 7, 8, 9, 10], remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection
Epidemiology and outcomes of out-of-hospital cardiac arrest in Qatar : A nationwide observational study
This is a pre-copyedited, author-produced pdf of an article accepted for publication in International Journal of Cardiology following peer review. The version of record, 'Epidemiology and outcomes of out-of-hospital cardiac arrest in Qatar: A nationwide observational study', F. B. Irfan, et.a., International Journal of Cardiology, Vol 223, pp 1007-1013, November 2016, first published on line on August 24, 2016, is available on line via doi: http;//dx.doi.org/10.1016/j.ijcard.2016.08.299 © 2016 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Background Out-of-hospital cardiac arrest (OHCA) studies from the Middle East and Asian region are limited. This study describes the epidemiology, emergency health services, and outcomes of OHCA in Qatar. Methods This was a prospective nationwide population-based observational study on OHCA patients in Qatar according to Utstein style guidelines, from June 2012 to May 2013. Data was collected from various sources; the national emergency medical service, 4 emergency departments, and 8 public hospitals. Results The annual crude incidence of presumed cardiac OHCA attended by EMS was 23.5 per 100,000. The age-sex standardized incidence was 87.8 per 100,000 population. Of the 447 OHCA patients included in the final analysis, most were male (n = 360, 80.5%) with median age of 51 years (IQR = 39–66). Frequently observed nationalities were Qatari (n = 89, 19.9%), Indian (n = 74, 16.6%) and Nepalese (n = 52, 11.6%). Bystander cardiopulmonary resuscitation (CPR) was carried out in 92 (20.6%) OHCA patients. Survival rate was 8.1% (n = 36) and multivariable logistic regression indicated that initial shockable rhythm (OR 13.4, 95% CI 5.4–33.3, p = 0.001) was associated with higher odds of survival while male gender (OR 0.27, 95% CI 0.1–0.8, p = 0.01) and advanced cardiac life support (ACLS) (OR 0.15, 95% CI 0.04–0.5, p = 0.02) were associated with lower odds of survival. Conclusions Standardized incidence and survival rates were comparable to Western countries. Although expatriates comprise more than 80% of the population, Qataris contributed 20% of the total cardiac arrests observed. There are significant opportunities to improve outcomes, including community-based CPR and defibrillation training.Peer reviewe
Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators
After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line
Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content
LetterThe human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome[1, 2]. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis [3, 4]. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes [5, 6, 7, 8], but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, ‘genetic hitchhiking’ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.National Institutes of Health (U.S.)Howard Hughes Medical Institut
How to make a sex chromosome
Sex chromosomes can evolve once recombination is halted between a homologous pair of chromosomes. Owing to detailed studies using key model systems, we have a nuanced understanding and a rich review literature of what happens to sex chromosomes once recombination is arrested. However, three broad questions remain unanswered. First, why do sex chromosomes stop recombining in the first place? Second, how is recombination halted? Finally, why does the spread of recombination suppression, and therefore the rate of sex chromosome divergence, vary so substantially across clades? In this review, we consider each of these three questions in turn to address fundamental questions in the field, summarize our current understanding, and highlight important areas for future work
Alternative patterns of sex chromosome differentiation in Aedes aegypti (L).
BACKGROUND: Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. RESULTS: Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (H exp , one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased H exp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. CONCLUSIONS: The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae
ZNF280BY and ZNF280AY: autosome derived Y-chromosome gene families in Bovidae
<p>Abstract</p> <p>Background</p> <p>Recent progress in exploring the Y-chromosome gene content in humans, mice and cats have suggested that "autosome-to-Y" transposition of the male fertility genes is a recurrent theme during the mammalian Y-chromosome evolution. These transpositions are lineage-dependent. The purpose of this study is to investigate the lineage-specific Y-chromosome genes in bovid.</p> <p>Results</p> <p>We took a direct testis cDNA selection strategy and discovered two novel gene families, <it>ZNF280BY </it>and <it>ZNF280AY</it>, on the bovine (<it>Bos taurus</it>) Y-chromosome (BTAY), which originated from the transposition of a gene block on the bovine chromosome 17 (BTA17) and subsequently amplified. Approximately 130 active <it>ZNF280BY </it>loci (and ~240 pseudogenes) and ~130 pseudogenized <it>ZNF280AY </it>copies are present over the majority of the male-specific region (MSY). Phylogenetic analysis indicated that both gene families fit with the "birth-and-death" model of evolution. The active <it>ZNF280BY </it>loci share high sequence similarity and comprise three major genomic structures, resulted from insertions/deletions (indels). Assembly of a 1.2 Mb BTAY sequence in the MSY ampliconic region demonstrated that <it>ZNF280BY </it>and <it>ZNF280AY</it>, together with <it>HSFY </it>and <it>TSPY </it>families, constitute the major elements within the repeat units. The <it>ZNF280BY </it>gene family was found to express in different developmental stages of testis with sense RNA detected in all cell types of the seminiferous tubules while the antisense RNA detected only in the spermatids. Deep sequencing of the selected cDNAs revealed that different loci of <it>ZNF280BY </it>were differentially expressed up to 60-fold. Interestingly, different copies of the <it>ZNF280AY </it>pseudogenes were also found to differentially express up to 10-fold. However, expression level of the <it>ZNF280AY </it>pseudogenes was almost 6-fold lower than that of the <it>ZNF280BY </it>genes. <it>ZNF280BY </it>and <it>ZNF280AY </it>gene families are present in bovid, but absent in other mammalian lineages.</p> <p>Conclusions</p> <p><it>ZNF280BY </it>and <it>ZNF280AY </it>are lineage-specific, multi-copy Y-gene families specific to <it>Bovidae</it>, and are derived from the transposition of an autosomal gene block. The temporal and spatial expression patterns of <it>ZNF280BY</it>s in testis suggest a role in spermatogenesis. This study offers insights into the genomic organization of the bovine MSY and gene regulation in spermatogenesis, and provides a model for studying evolution of multi-copy gene families in mammals.</p
A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla
<p>Abstract</p> <p>Background</p> <p>The early radiation of the <it>Cetartiodactyla </it>is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (<it>Cetacea </it>and <it>Ruminantia</it>). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields.</p> <p>Results and discussion</p> <p>We report a large interstitial insertion in the Y amelogenin locus in most of the <it>Cetartiodactyla </it>lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species.</p> <p>When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in <it>Cetartiodactyla </it>whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion.</p> <p>The 1 kbp <it>Amel-Y </it>amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region.</p> <p>Conclusion</p> <p>The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the <it>Cetartiodactyla </it>but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science.</p
Can Intra-Y Gene Conversion Oppose the Degeneration of the Human Y Chromosome? A Simulation Study
The human Y is a genetically degenerate chromosome, which has lost about 97% of the genes originally present. Most of the remaining human Y genes are in large duplicated segments (ampliconic regions) undergoing intense Y–Y gene conversion. It has been suggested that Y–Y gene conversion may help these genes getting rid of deleterious mutations that would inactivate them otherwise. Here, we tested this idea by simulating the evolution of degenerating Y chromosomes with or without gene conversion using the most up-to-date population genetics parameters for humans. We followed the fate of a variant with Y–Y gene conversion in a population of Y chromosomes where Y–Y gene conversion is originally absent. We found that this variant gets fixed more frequently than the neutral expectation, which supports the idea that gene conversion is beneficial for a degenerating Y chromosome. Interestingly, a very high rate of gene conversion is needed for an effect of gene conversion to be observed. This suggests that high levels of Y-Y gene conversion observed in humans may have been selected to oppose the Y degeneration. We also studied with a similar approach the evolution of ampliconic regions on the Y chromosomes and found that the fixation of many copies at once is unlikely, which suggest these regions probably evolved gradually unless selection for increased dosage favored large-scale duplication events. Exploring the parameter space showed that Y–Y gene conversion may be beneficial in most mammalian species, which is consistent with recent data in chimpanzees and mice
Widespread Translocation from Autosomes to Sex Chromosomes Preserves Genetic Variability in an Endangered Lark
Species that pass repeatedly through narrow population bottlenecks (<100 individuals) are likely to have lost a large proportion of their genetic variation. Having genotyped 92 Raso larks Alauda razae, a Critically Endangered single-island endemic whose world population in the Cape Verdes over the last 100 years has fluctuated between about 15 and 130 pairs, we found variation at 7 of 21 microsatellite loci that successfully amplified, the remaining loci being monomorphic. At 6 of the polymorphic loci variation was sex-linked, despite the fact that these microsatellites were not sex-linked in the other passerine birds where they were developed. Comparative analysis strongly suggests that material from several different autosomes has been recently transferred to the sex chromosomes in larks. Sex-linkage might plausibly allow some level of heterozygosity to be maintained, even in the face of persistently small population sizes
- …
