1,756 research outputs found

    Frequency dependent effective conductivity of two-dimensional metal-dielectric composites

    Full text link
    We analyze a random resistor-inductor-capacitor (RLC)(RLC) lattice model of 2-dimensional metal-insulator composites. The results are compared with Bruggeman's and Landauer's Effective Medium Approximations where a discrepancy was observed for some frequency zones. Such a discrepancy is mainly caused by the strong conductivity fluctuations. Indeed, a two-branches distribution is observed for low frequencies. We show also by increasing the system size that at pcp_c the so-called Drude peak vanishes; it increases for vanishing losses.Comment: 7 pages including all figures, accepted in Int. J. Mod. Phys.

    Nonequilibrium Transport in Quantum Impurity Models (Bethe-Ansatz for open systems)

    Full text link
    We develop an exact non-perturbative framework to compute steady-state properties of quantum-impurities subject to a finite bias. We show that the steady-state physics of these systems is captured by nonequilibrium scattering eigenstates which satisfy an appropriate Lippman-Schwinger equation. Introducing a generalization of the equilibrium Bethe-Ansatz - the Nonequilibrium Bethe-Ansatz (NEBA), we explicitly construct the scattering eigenstates for the Interacting Resonance Level model and derive exact, nonperturbative results for the steady-state properties of the system.Comment: 4 pages, 1 figur

    Intensity distribution of scalar waves propagating in random media

    Full text link
    Transmission of the scalar field through the random medium, represented by the system of randomly distributed dielectric cylinders is calculated numerically. System is mapped to the problem of electronic transport in disordered two-dimensional systems. Universality of the statistical distribution of transmission parameters is analyzed in the metallic and in the localized regimes.In the metallic regime the universality of the transmission statistics in all transparent channels is observed. In the band gaps, we distinguish the disorder induced (Anderson) localization from the tunneling through the system due to the gap in the density of states. We show also that absorption causes rapid decrease of the mean conductance, but, contrary to the localized regime, the conductance is self-averaged with a Gaussian distribution

    Electron-vibration interaction in single-molecule junctions: from contact to tunneling regime

    Get PDF
    Point contact spectroscopy on a H2O molecule bridging Pt electrodes reveals a clear crossover between enhancement and reduction of the conductance due to electron-vibration interaction. As single channel models predict such a crossover at transmission probability of t=0.5, we used shot noise measurements to analyze the transmission and observed at least two channels across the junction where the dominant channel has t=0.51+/-0.01 transmission probability at the crossover conductance, which is consistent with the predictions for single-channel models.Comment: 4 pages, 1 table, 4 figure

    Excess Noise in Biased Superconducting Weak Links

    Full text link
    Non-equilibrium excess noise of a short quasi one-dimensional constriction between two superconductors is considered. A general expression for the current-current correlation function valid for arbitrary temperatures and bias voltages is derived. This formalism is applied to a current-carrying quantum channel with perfect transparency. Contrary to a transparent channel separating two normal conductors, a weak link between two superconductors exhibits a finite level of noise. The source of noise is fractional Andreev scattering of quasiparticles with energies E|E| greater than the half-width Δ\Delta of the superconducting gap. For high bias voltages, VΔ/eV \gg \Delta /e, the relation between the zero-frequency limit of the noise spectrum, S(0)S(0), and the excess current IexcI_{\text{exc}} reads S(0)=(1/5)eIexcS(0)=(1/5)|e|I_{\text{exc}}. As Δ0\Delta \rightarrow 0 both the excess noise and the excess current vanish linearly in Δ\Delta, %Δ\propto \Delta, their ratio being constant.Comment: 8 pages (Latex), 1 figur

    Electron orbital valves made of multiply connected armchair carbon nanotubes with mirror-reflection symmetry: tight-binding study

    Full text link
    Using the tight-binding method and the Landauer-B\"{u}ttiker conductance formalism, we demonstrate that a multiply connected armchair carbon nanotube with a mirror-reflection symmetry can sustain an electron current of the π\pi-bonding orbital while suppress that of the π\pi-antibonding orbital over a certain energy range. Accordingly, the system behaves like an electron orbital valve and may be used as a scanning tunneling microscope to probe pairing symmetry in d-wave superconductors or even orbital ordering in solids which is believed to occur in some transition-metal oxides.Comment: 4 figures, 12 page

    Quantum Ballistic Evolution in Quantum Mechanics: Application to Quantum Computers

    Full text link
    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators TT is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proved that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics.Comment: 37 pages Latexwith 2 postscript figures tar+gzip+uuencoded, to be published in Phys. Rev.

    Dynamic response of isolated Aharonov-Bohm rings coupled to an electromagnetic resonator

    Full text link
    We have measured the flux dependence of both real and imaginary conductance of GaAs/GaAlAsGaAs/GaAlAs isolated mesoscopic rings at 310 MHz. The rings are coupled to a highly sensitive electromagnetic superconducting micro-resonator and lead to a perturbation of the resonance frequency and quality factor. This experiment provides a new tool for the investigation of the conductance of mesoscopic systems without any connection to invasive probes. It can be compared with recent theoretical predictions emphasizing the differences between isolated and connected geometries and the relation between ac conductance and persistent currents. We observe Φ0/2\Phi_0/2 periodic oscillations on both components of the magnetoconductance. The oscillations of the imaginary conductance whose sign corresponds to diamagnetism in zero field, are 3 times larger than the Drude conductance G0G_0. The real part of the periodic magnetoconductance is of the order of 0.2G00.2 G_0 and is apparently negative in low field. It is thus notably different from the weak localisation oscillations observed in connected rings, which are much smaller and opposite in sign.Comment: 4 pages, revtex, epsf, 4 Postscript file

    Statistical model of dephasing in mesoscopic devices introduced in the scattering matrix formalism

    Full text link
    We propose a phenomenological model of dephasing in mesoscopic transport, based on the introduction of random phase fluctuations in the computation of the scattering matrix of the system. A Monte Carlo averaging procedure allows us to extract electrical and microscopic device properties. We show that, in this picture, scattering matrix properties enforced by current conservation and time reversal invariance still hold. In order to assess the validity of the proposed approach, we present simulations of conductance and magnetoconductance of Aharonov-Bohm rings that reproduce the behavior observed in experiments, in particular as far as aspects related to decoherence are concerned.Comment: 6 pages, 6 figure

    Luttinger liquid behavior in weakly disordered quantum wires

    Full text link
    We have measured the temperature dependence of the conductance in long V-groove quantum wires (QWRs) fabricated in GaAs/AlGaAs heterostructures. Our data is consistent with recent theories developed within the framework of the Luttinger liquid model, in the limit of weakly disordered wires. We show that for the relatively small amount of disorder in our QWRs, the value of the interaction parameter g is g=0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which does not allow their treatment in the framework of perturbation theory. Trying to fit such data with perturbation-theory models leads inevitably to wrong (lower) values of g.Comment: 4 pages, 4 figure
    corecore