3,047 research outputs found
Development of a static feed water electrolysis system
A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated
The development of an electrochemical technique for in situ calibrating of combustible gas detectors
A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector
Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing
Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed
Recommended from our members
Opportunities for and challenges to further reductions in the “specific power” rating of wind turbines installed in the United States
A wind turbine’s “specific power” rating relates its capacity to the swept area of its rotor in terms of Watt per square meter. For a given generator capacity, specific power declines as rotor size increases. In land-rich but capacity-constrained wind power markets, such as the United States, developers have an economic incentive to maximize megawatt-hours per constrained megawatt, and so have favored turbines with ever-lower specific power. To date, this trend toward lower specific power has pushed capacity factors higher while reducing the levelized cost of energy. We employ geospatial levelized cost of energy analysis across the United States to explore whether this trend is likely to continue. We find that under reasonable cost scenarios (i.e. presuming that logistical challenges from very large blades are surmountable), low-specific-power turbines could continue to be in demand going forward. Beyond levelized cost of energy, the boost in market value that low-specific-power turbines provide could become increasingly important as wind penetration grows
Advanced combined iodine dispenser and detector
A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals
Triple redundant hydrogen sensor with in situ calibration
To meet sensing and calibration needs, an in situ calibration technique was developed. It is based on electrolytic generation of a hydrogen/air atmosphere within a hydrogen sensor. The hydrogen is generated from water vapor in the air, and being electrical in nature, the in situ calibration can be performed completely automatically in remote locations. Triply redundant sensor elements are integrated within a single, compact housing, and digital logic provides inter-sensor comparisons to warn of and identify malfunctioning sensor elements. An evaluation of this concept is presented
Andreev Level Qubit
We investigate the dynamics of a two-level Andreev bound state system in a
transmissive quantum point contact embedded in an rf-SQUID. Coherent coupling
of the Andreev levels to the circulating supercurrent allows manipulation and
read out of the level states. The two-level Hamiltonian for the Andreev levels
is derived, and the effect of interaction with the quantum fluctuations of the
induced flux is studied. We also consider an inductive coupling of qubits, and
discuss the relevant SQUID parameters for qubit operation and read out.Comment: 4 pages, 1 figur
Problem based learning in practice:listening to lecturers - an investigation of academics’ perceptions and practice concerning problem based learning
SHEER2 Final report S. MacAndrew et al October 2008 This report is aimed at a general readership. It will be of interest to lecturers, educational developers and senior managers in universities. The further reading section provides more specific detail on background literature and context. Aim The study investigates academics’ perceptions and practice concerning problem based learning. Our aims are best summarised by our research questions. These were: 1. How do lecturers perceive problem based learning? 2. What is lecturers’ working definition of problem based learning? 3. What are lecturers’ opinions on the effectiveness or otherwise of problem based learning? 4. What are lecturers’ observations concerning the student experience of problem based learning? 5. What materials do lecturers typically use during problem based learning sessions? Method Twenty-one academics at the Abertay University, the University of Dundee and the University of the West of Scotland and two academics from Temple University, Philadelphia USA volunteered to participate in open ended participant-led discussions about the nature of problem based learning and its use in teaching. The sessions included both group and individual discussions arising from a predetermined set of facilitating questions (see Appendix 1). The disciplines represented included biology, chemistry, contemporary science, construction and the environment, creative technology, engineering, food technology, nursing, nutrition, physical activity and health, psychology, and sport and sport coaching. A university careers advisor and the business director of a multimedia teaching space also participated. The lecturers ranged in experience from newly appointed lecturers at the start of their teaching careers to experienced lecturers to lecturers in senior management positions. Participants were willing to have their comments paraphrased or quoted verbatim. Findings This report is based on written records of the data collection sessions. Specific topics raised by participants are summarised and structured below. Consideration of all of the responses reveals six approaches adopted by academics when preparing problem based learning material. These approaches are as follows: • Operational focus • Knowledge focus • Graduate attribute focus • Relative contribution focus • Student engagement focus • Student self-monitoring focus Appendix 2 details methodological considerations of relevance to this report. Implications The specific comments of the participants provide a unique window into academics’ current thinking concerning the use of problem based learning. The seven approaches detailed here could provide a template for designing PGCert material to facilitate academics. This material could be focused to assist lecturers in developing their own individual approach to creating problem based learning material in their teaching. Executive summar
Bayesian photon counting with electron-multiplying charge coupled devices (EMCCDs)
The EMCCD is a CCD type that delivers fast readout and negligible detector
noise, making it an ideal detector for high frame rate applications. Because of
the very low detector noise, this detector can potentially count single
photons. Considering that an EMCCD has a limited dynamical range and negligible
detector noise, one would typically apply an EMCCD in such a way that multiple
images of the same object are available, for instance, in so called lucky
imaging. The problem of counting photons can then conveniently be viewed as
statistical inference of flux or photon rates, based on a stack of images. A
simple probabilistic model for the output of an EMCCD is developed. Based on
this model and the prior knowledge that photons are Poisson distributed, we
derive two methods for estimating the most probable flux per pixel, one based
on thresholding, and another based on full Bayesian inference. We find that it
is indeed possible to derive such expressions, and tests of these methods show
that estimating fluxes with only shot noise is possible, up to fluxes of about
one photon per pixel per readout.Comment: Fixed a few typos compared to the published versio
Estimating Electric Fields from Vector Magnetogram Sequences
Determining the electric field (E-field) distribution on the Sun's
photosphere is essential for quantitative studies of how energy flows from the
Sun's photosphere, through the corona, and into the heliosphere. This E-field
also provides valuable input for data-driven models of the solar atmosphere and
the Sun-Earth system. We show how Faraday's Law can be used with observed
vector magnetogram time series to estimate the photospheric E-field, an
ill-posed inversion problem. Our method uses a "poloidal-toroidal
decomposition" (PTD) of the time derivative of the vector magnetic field. The
PTD solutions are not unique; the gradient of a scalar potential can be added
to the PTD E-field without affecting consistency with Faraday's Law. We present
an iterative technique to determine a potential function consistent with ideal
MHD evolution; but this E-field is also not a unique solution to Faraday's Law.
Finally, we explore a variational approach that minimizes an energy functional
to determine a unique E-field, similar to Longcope's "Minimum Energy Fit". The
PTD technique, the iterative technique, and the variational technique are used
to estimate E-fields from a pair of synthetic vector magnetograms taken from an
MHD simulation; and these E-fields are compared with the simulation's known
electric fields. These three techniques are then applied to a pair of vector
magnetograms of solar active region NOAA AR8210, to demonstrate the methods
with real data.Comment: 41 pages, 10 figure
- …
