1,663 research outputs found

    Edge state transport through disordered graphene nanoribbons in the quantum Hall regime

    Full text link
    The presence of strong disorder in graphene nanoribbons yields low-mobility diffusive transport at high charge densities, whereas a transport gap occurs at low densities. Here, we investigate the longitudinal and transverse magnetoresistance of a narrow (60 nm) nanoribbon in a six-terminal Hall bar geometry. At B= 11 T, quantum Hall plateaux appear at σxy=±2e2/h\sigma_{xy}=\pm2e^2/h, ±6e2/h\pm6e^2/h and ±10e2/h\pm10e^2/h, for which the Landau level spacing is larger than the Landau level broadening. Interestingly, the transport gap does not disappear in the quantum Hall regime, when the zero-energy Landau level is present at the charge neutrality point, implying that it cannot originate from a lateral confinement gap. At high charge densities, the longitudinal and Hall resistance exhibit reproducible fluctuations, which are most pronounced at the transition regions between Hall plateaux. Bias-dependent measurements strongly indicate that these fluctuations can be attributed to phase coherent scattering in the disordered ribbon.Comment: experimental paper; 4 pages, 4 figure

    Variability of cell wall polysaccharides composition and hemicellulose enzymatic profile in an apple progeny

    Get PDF
    The genetic variability of apple cell walls polysaccharides chemical composition and structure was assessed in a progeny of 141 individuals harvested over 2 years. The variability of the hemicelluloses oligosaccharides released by glucanase was analyzed by MALDI-TOF MS. The genetic contribution was distinguished from harvest year as well as from parental crossing patterns and scab resistance selection. Results showed that harvest year had a major impact on cell wall polysaccharide composition and structure. Within each harvest, genetic effect impact more significantly cell wall polysaccharide chemistry than does reciprocal crossing or early scab selection. Uronic acids, glucose, galactose and xylose contents as well as some glucomannan and xyloglucan structures have a high heritability. This first cell wall chemotyping of an apple progeny opens the way for future searches of genetic markers for the chemical variability of cell wall polysaccharides

    Phase-sensitive SQUIDs based on the 3D topological insulator HgTe

    Full text link
    Three-dimensional topological insulators represent a new class of materials in which transport is governed by Dirac surface states while the bulk remains insulating. Due to helical spin polarization of the surface states, the coupling of a 3D topological insulator to a nearby superconductor is expected to generate unconventional proximity induced pp-wave superconductivity. We report here on the development and measurements of SQUIDs on the surface of strained HgTe, a 3D topological insulator, as a potential tool to investigate this effect.Comment: 5 pages, 4 figures, contribution to the Nobel Symposium 156: New forms of matter: topological insulators and superconductor

    Surface state charge dynamics of a high-mobility three dimensional topological insulator

    Full text link
    We present a magneto-optical study of the three-dimensional topological insulator, strained HgTe using a technique which capitalizes on advantages of time-domain spectroscopy to amplify the signal from the surface states. This measurement delivers valuable and precise information regarding the surface state dispersion within <1 meV of the Fermi level. The technique is highly suitable for the pursuit of the topological magnetoelectric effect and axion electrodynamics.Comment: Published version, online Sept 23, 201

    The detection of back-to-back proton pairs in Charged-Current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line

    Full text link
    Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex, 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology

    Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems

    Full text link
    The many-body Monte Carlo method is used to evaluate the frequency dependent conductivity and the average mobility of a system of hopping charges, electronic or ionic on a one-dimensional chain or channel of finite length. Two cases are considered: the chain is connected to electrodes and in the other case the chain is confined giving zero dc conduction. The concentration of charge is varied using a gate electrode. At low temperatures and with the presence of an injection barrier, the mobility is an oscillatory function of density. This is due to the phenomenon of charge density pinning. Mobility changes occur due to the co-operative pinning and unpinning of the distribution. At high temperatures, we find that the electron-electron interaction reduces the mobility monotonically with density, but perhaps not as much as one might intuitively expect because the path summation favour the in-phase contributions to the mobility, i.e. the sequential paths in which the carriers have to wait for the one in front to exit and so on. The carrier interactions produce a frequency dependent mobility which is of the same order as the change in the dc mobility with density, i.e. it is a comparably weak effect. However, when combined with an injection barrier or intrinsic disorder, the interactions reduce the free volume and amplify disorder by making it non-local and this can explain the too early onset of frequency dependence in the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review

    Evaluation of concrete structures by combining non-destructive testing methods (SENSO project)

    Get PDF
    The management and maintenance of the built heritage is one of the main interests of the owners of concrete structures. The engineers wish to obtain quantitative information about concrete properties and their variability. Non-destructive testing (NDT) is very popular in this context as it quickly provides relevant information on the integrity and evolution of the material, but several kinds of indicators representative of the concrete condition need to be evaluated. A French Project, named SENSO, aims to develop methods for the non-destructive evaluation of concrete based on a multi-techniques approach. Several families of techniques are concerned (ultrasonic, electromagnetic, electrical, etc.). The main objective is to define the sensitivity of the techniques and the variability of the evaluation for each indicator concerned. To achieve this, a large experimental programme, involving a representative range of concretes and several indicators, has been carried out. A large database, linking the NDT observables and the indicators, allows the different observables to be distinguished in terms of quality (linked to the variability) and in terms of relevance for the characterisation of each indicator. The improvement of the indicator evaluation by means of technique combinatio
    corecore