109 research outputs found
Experimental determination of the state-dependent enhancement of the electron-positron momentum density in solids
The state-dependence of the enhancement of the electron-positron momentum
density is investigated for some transition and simple metals (Cr, V, Ag and
Al). Quantitative comparison with linearized muffin-tin orbital calculations of
the corresponding quantity in the first Brillouin zone is shown to yield a
measurement of the enhancement of the s, p and d states, independent of any
parameterizations in terms of the electron density local to the positron. An
empirical correction that can be applied to a first-principles state-dependent
model is proposed that reproduces the measured state-dependence very well,
yielding a general, predictive model for the enhancement of the momentum
distribution of positron annihilation measurements, including those of angular
correlation and coincidence Doppler broadening techniques
Fermi surface of an important nano-sized metastable phase: AlLi
Nanoscale particles embedded in a metallic matrix are of considerable
interest as a route towards identifying and tailoring material properties. We
present a detailed investigation of the electronic structure, and in particular
the Fermi surface, of a nanoscale phase ( AlLi) that has so far been
inaccessible with conventional techniques, despite playing a key role in
determining the favorable material properties of the alloy (Al\nobreakdash-9
at. %\nobreakdash-Li). The ordered precipitates only form within the
stabilizing Al matrix and do not exist in the bulk; here, we take advantage of
the strong positron affinity of Li to directly probe the Fermi surface of
AlLi. Through comparison with band structure calculations, we demonstrate
that the positron uniquely probes these precipitates, and present a 'tuned'
Fermi surface for this elusive phase
Enhanced electron correlations at the SrxCa1-xVO3 surface
We report hard x-ray photoemission spectroscopy measurements of the
electronic structure of the prototypical correlated oxide SrxCa1-xVO3. By
comparing spectra recorded at different excitation energies, we show that 2.2
keV photoelectrons contain a substantial surface component, whereas 4.2 keV
photoelectrons originate essentially from the bulk of the sample.
Bulk-sensitive measurements of the O 2p valence band are found to be in good
agreement with ab initio calculations of the electronic structure, with some
modest adjustments to the orbital-dependent photoionization cross sections. The
evolution of the O 2p electronic structure as a function of the Sr content is
dominated by A-site hybridization. Near the Fermi level, the correlated V 3d
Hubbard bands are found to evolve in both binding energy and spectral weight as
a function of distance from the vacuum interface, revealing higher correlation
at the surface than in the bulk
Observation of surface states on heavily indium doped SnTe(111), a superconducting topological crystalline insulator
The topological crystalline insulator tin telluride is known to host
superconductivity when doped with indium (SnInTe), and for low
indium contents () it is known that the topological surface states are
preserved. Here we present the growth, characterization and angle resolved
photoemission spectroscopy analysis of samples with much heavier In doping (up
to ), a regime where the superconducting temperature is increased
nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like
surface states persist
Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra
Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the
study of the electronic structure of condensed matter. Although the linewidths
of many RIXS features are narrow, the experimental broadening can often hamper
the identification of spectral features. Here, we show that the Maximum Entropy
technique can successfully be applied in the deconvolution of RIXS spectra,
improving the interpretation of the loss features without a severe increase in
the noise ratio
Strain dependence of bonding and hybridization across the metal-insulator transition of VO2
Soft x-ray spectroscopy is used to investigate the strain dependence of the
metal-insulator transition of VO2. Changes in the strength of the V 3d - O 2p
hybridization are observed across the transition, and are linked to the
structural distortion. Furthermore, although the V-V dimerization is
well-described by dynamical mean-field theory, the V-O hybridization is found
to have an unexpectedly strong dependence on strain that is not predicted by
band theory, emphasizing the relevance of the O ion to the physics of VO2
The electronic structure of {\em R}NiC intermetallic compounds
First-principles calculations of the electronic structure of members of the
NiC series are presented, and their Fermi surfaces investigated for
nesting propensities which might be linked to the charge-density waves
exhibited by certain members of the series ( = Sm, Gd and Nd). Calculations
of the generalized susceptibility, , show strong
peaks at the same -vector in both the real and imaginary parts for
these compounds. Moreover, this peak occurs at a wavevector which is very close
to that experimentally observed in SmNiC. In contrast, for LaNiC (which
is a superconductor below 2.7K) as well as for ferromagnetic SmNiC, there
is no such sharp peak. This could explain the absence of a charge-density wave
transition in the former, and the destruction of the charge-density wave that
has been observed to accompany the onset of ferromagnetic order in the latter.Comment: 5 pages, 7 figures. Accepted for publication in Phys. Rev.
Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.
- …
