477 research outputs found
TeMA: A Tensorial Memetic Algorithm for Many-Objective Parallel Disassembly Sequence Planning in Product Refurbishment
The refurbishment market is rich in opportunities—the global refurbished smartphones market alone will be $38.9 billion by 2025. Refurbishing a product involves disassembling it to test the key parts and replacing those that are defective or worn. This restores the product to like-new conditions, so that it can be put on the market again at a lower price. Making this process quick and efficient is crucial. This paper presents a novel formulation of parallel disassembly problem that maximizes the degree of parallelism, the level of ergonomics, and how the workers' workload is balanced, while minimizing the disassembly time and the number of times the product has to be rotated. The problem is solved using the Tensorial Memetic Algorithm (TeMA), a novel two-stage many-objective (MaO) algorithm, which encodes parallel disassembly plans by using third-order tensors. TeMA first splits the objectives into primary and secondary on the basis of a decision-maker's preferences, and then finds Pareto-optimal compromises (seeds) of the primary objectives. In the second stage, TeMA performs a fine-grained local search that explores the objective space regions around the seeds, to improve the secondary objectives. TeMA was tested on two real-world refurbishment processes involving a smartphone and a washing machine. The experiments showed that, on average, TeMA is statistically more accurate than various efficient MaO algorithms in the decision-maker's area of preference
UHF-RFID smart gate: Tag action classifier by artificial neural networks
The application of Artificial Neural Networks (ANNs) to discriminate tag actions in UHF-RFID gate is presented in this paper. By exploiting Received Signal Strength Indicator values acquired in a real experimental scenario, a multi-layer perceptron neural network is trained to distinguish among tags incoming, outgoing or passing the RFID gate. A 99% accuracy can be obtained in tag classification by employing only one reader antenna and independently from tag orientation and typology
EMOGA: a hybrid genetic algorithm with extremal optimization core for multiobjective disassembly line balancing
In a world where products get obsolescent ever more quickly, discarded devices produce million tons of electronic waste. Improving how end-of-life products are dismantled helps reduce this waste, as resources are conserved and fed back into the supply chain, thereby promoting reuse and recycling. This paper presents the Extremal MultiObjective Genetic Algorithm (EMOGA), a hybrid nature-inspired optimization technique for a multiobjective version of the Disassembly Line Balancing Problem (DLBP). The aim is to minimize the number of workstations, and to maximize profit and disassembly depth, when dismounting products in disassembly lines. EMOGA is a Pareto-based genetic algorithm (GA) hybridized with a module based on extremal optimization (EO), which uses a tailored mutation operator and a continuous relaxation-based seeding technique. The experiments involved the disassembly of a hammer drill and a microwave oven. Performance evaluation was carried out by comparing EMOGA to various efficient algorithms. The results showed that EMOGA is faster or gets closer to the Pareto front, or both, in all comparisons
Sequential bilateral cochlear implant: long-term speech perception results in children first implanted at an early age
Purpose: The study aims to assess the benefit of sequential bilateral cochlear implantation in children with congenital bilateral profound hearing loss, submitted to the first implant at an early age. Methods: We enrolled all the bilateral sequential cochlear implanted children who received the first implant within 48 months and the second within 12 years of age at our Institution. The children were submitted to disyllabic word recognition tests and Speech Reception Threshold (SRT) assessment using the OLSA matrix sentence test with the first implanted device (CI1), with the second implanted device (CI2), and with both devices (CIbil). Furthermore, we measured the datalogging of both devices. Then we calculated the binaural SRT gain (b-SRTgain) and checked the correlations between speech perception results and the b-SRTgain with the child’s age at CI1 and CI2, DELTA and the datalogging reports. Results: With the bilateral electric stimulation, we found a significant improvement in disyllabic word recognition scores and in SRT. Moreover, the datalogging showed no significant differences in the time of use of CI1 and CI2. We found significant negative correlations between speech perception abilities with CI2 and age at CI2 and DELTA, and between the SRT with CI1 and the b-SRTgain. Conclusions: From this study we can conclude that in a sequential CI procedure, even if a short inter-implant delay and lower ages at the second surgery can lead to better speech perception with CI2, children can benefit from bilateral stimulation independently of age at the second surgery and the DELTA
53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility
Double-strand breaks activate the ataxia telangiectasia mutated (ATM) kinase, which promotes the accumulation of DNA damage factors in the chromatin surrounding the break. The functional significance of the resulting DNA damage foci is poorly understood. Here we show that 53BP1 (also known as TRP53BP1), a component of DNA damage foci, changes the dynamic behaviour of chromatin to promote DNA repair. We used conditional deletion of the shelterin component TRF2 (also known as TERF2) from mouse cells (TRF2fl/-) to deprotect telomeres, which, like double-strand breaks, activate the ATM kinase, accumulate 53BP1 and are processed by non-homologous end joining (NHEJ). Deletion of TRF2 from 53BP1-deficient cells established that NHEJ of dysfunctional telomeres is strongly dependent on the binding of 53BP1 to damaged chromosome ends. To address the mechanism by which 53BP1 promotes NHEJ, we used time-lapse microscopy to measure telomere dynamics before and after their deprotection. Imaging showed that deprotected telomeres are more mobile and sample larger territories within the nucleus. This change in chromatin dynamics was dependent on 53BP1 and ATM but did not require a functional NHEJ pathway. We propose that the binding of 53BP1 near DNA breaks changes the dynamic behaviour of the local chromatin, thereby facilitating NHEJ repair reactions that involve distant sites, including joining of dysfunctional telomeres and AID (also known as AICDA)-induced breaks in immunoglobulin class-switch recombination
Children with Moderate Acute Malnutrition with No Access to Supplementary Feeding Programmes Experience High Rates of Deterioration and No Improvement: Results from a Prospective Cohort Study in Rural Ethiopia
Background: Children with moderate acute malnutrition (MAM) have an increased risk of mortality, infections and impaired physical and cognitive development compared to well-nourished children. In parts of Ethiopia not considered chronically food insecure there are no supplementary feeding programmes (SFPs) for treating MAM. The short-term outcomes of children who have MAM in such areas are not currently described, and there remains an urgent need for evidence-based policy recommendations.
Methods: We defined MAM as mid-upper arm circumference (MUAC) of ≥11.0cm and <12.5cm with no bilateral pitting oedema to include Ethiopian government and World Health Organisation cut-offs. We prospectively surveyed 884 children aged 6–59 months living with MAM in a rural area of Ethiopia not eligible for a supplementary feeding programme. Weekly home visits were made for seven months (28 weeks), covering the end of peak malnutrition through to the post-harvest period (the most food secure window), collecting anthropometric, socio-demographic and food security data.
Results: By the end of the study follow up, 32.5% (287/884) remained with MAM, 9.3% (82/884) experienced at least one episode of SAM (MUAC <11cm and/or bilateral pitting oedema), and 0.9% (8/884) died. Only 54.2% of the children recovered with no episode of SAM by the end of the study. Of those who developed SAM half still had MAM at the end of the follow up period. The median (interquartile range) time to recovery was 9 (4–15) weeks. Children with the lowest MUAC at enrolment had a significantly higher risk of remaining with MAM and a lower chance of recovering.
Conclusions: Children with MAM during the post-harvest season in an area not eligible for SFP experience an extremely high incidence of SAM and a low recovery rate. Not having a targeted nutrition-specific intervention to address MAM in this context places children with MAM at excessive risk of adverse outcomes. Further preventive and curative approaches should urgently be considered
Goal-Directed Reasoning and Cooperation in Robots in Shared Workspaces: an Internal Simulation Based Neural Framework
From social dining in households to product assembly in manufacturing lines, goal-directed reasoning and cooperation with other agents in shared workspaces is a ubiquitous aspect of our day-to-day activities. Critical for such behaviours is the ability to spontaneously anticipate what is doable by oneself as well as the interacting partner based on the evolving environmental context and thereby exploit such information to engage in goal-oriented action sequences. In the setting of an industrial task where two robots are jointly assembling objects in a shared workspace, we describe a bioinspired neural architecture for goal-directed action planning based on coupled interactions between multiple internal models, primarily of the robot’s body and its peripersonal space. The internal models (of each robot’s body and peripersonal space) are learnt jointly through a process of sensorimotor exploration and then employed in a range of anticipations related to the feasibility and consequence of potential actions of two industrial robots in the context of a joint goal. The ensuing behaviours are demonstrated in a real-world industrial scenario where two robots are assembling industrial fuse-boxes from multiple constituent objects (fuses, fuse-stands) scattered randomly in their workspace. In a spatially unstructured and temporally evolving assembly scenario, the robots employ reward-based dynamics to plan and anticipate which objects to act on at what time instances so as to successfully complete as many assemblies as possible. The existing spatial setting fundamentally necessitates planning collision-free trajectories and avoiding potential collisions between the robots. Furthermore, an interesting scenario where the assembly goal is not realizable by either of the robots individually but only realizable if they meaningfully cooperate is used to demonstrate the interplay between perception, simulation of multiple internal models and the resulting complementary goal-directed actions of both robots. Finally, the proposed neural framework is benchmarked against a typically engineered solution to evaluate its performance in the assembly task. The framework provides a computational outlook to the emerging results from neurosciences related to the learning and use of body schema and peripersonal space for embodied simulation of action and prediction. While experiments reported here engage the architecture in a complex planning task specifically, the internal model based framework is domain-agnostic facilitating portability to several other tasks and platforms
Retinal Microvascular Alterations in Hidradenitis Suppurativa Patients: A Pilot Study Using Optical Coherence Tomography Angiography
Background: Hidradenitis suppurativa (HS) is a relapsing-remitting inflammatory disease characterized by the progression of asymptomatic nodules to deep-seated lesions and fistula formation that leads to suppuration and scarring. Optical coherence tomography angiography (OCTA) is a new non-invasive imaging technique that carefully analyzes retinal microvasculature networks with high-resolution imaging. Recent studies have demonstrated that retinal vessel density and retinal perfusion reflect systemic inflammatory responses. This study's aim was to analyze OCTA-derived retinal microvasculature parameters to understand if patients affected by HS and without any relevant ocular or systemic comorbidities showed impaired retinal vascular function and morphology. Method: We performed a case-control study of HS patients and age- and sex-matched control cohort. A total of 20 eyes from 10 HS patients and 30 eyes from 15 healthy controls were analyzed, and OCTA-derived microvasculature parameters were compared between groups. Results: OCTA images showed that HS patients, compared to healthy controls, were typically characterized by higher values of the foveal avascular zone (FAZ) both in the superficial capillary plexus (SCP) and in the deep capillary plexus (DCP), and by lower values of vessel density (VD)-SCP, VD-DCP, and vessel length density (VLD)-SCP in the foveal region. These findings partially reflect changes that have been demonstrated in diabetic patients that could be induced by a protracted metabolic or systemic inflammatory dysregulation. Conclusions: In conclusion, OCTA enables large-scale, non-invasive visual screening and follow-up of the retinal vasculature features, providing a new strategy for the prevention and monitoring of visual changes in HS patients
Inside and out: the activities of senescence in cancer.
The core aspect of the senescent phenotype is a stable state of cell cycle arrest. However, this is a disguise that conceals a highly active metabolic cell state with diverse functionality. Both the cell-autonomous and the non-cell-autonomous activities of senescent cells create spatiotemporally dynamic and context-dependent tissue reactions. For example, the senescence-associated secretory phenotype (SASP) provokes not only tumour-suppressive but also tumour-promoting responses. Senescence is now increasingly considered to be an integrated and widespread component that is potentially important for tumour development, tumour suppression and the response to therapy.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nrc377
Effects of systemic glucocorticosteroids on peripheral neutrophil functions in asthmatic subjects: an ex vivo study
In 21 asthmatic subjects, several functions of isolated peripheral neutrophils (chemokinesis and chemotaxis toward 10% E. coli; superoxide anion generation after PMA; leukotriene B4 (LTB4) release from whole blood and isolated neutrophtls, before and after different stimuli) were evaluated during an acute exacerbation of asthma, and after 14 – 54 days of treatment with systemic glucocorticosteroids (GCS). During acute exacerbation, superoxide anion generation was higher in asthmatics than in eleven normal subjects (39.2 ± 14.1 vs. 25.2 ± 7.3 nmol, p < 0.05); there was a significant correlation between FEV1 (% of predicted) and neutrophil chemotaxis (r = −0.52, p = 0.04). After treatment, there was no significant change in all neutrophil functions, except for a decrease in neutrophil chemotaxis in subjects who showed an FEV1 increase > 20% after GCS treatment (from 131 ± 18 to 117 ± 21 μm, p = 0.005). Chemokinesis sicantly decreased in all subjects, and the changes significantly correlated with an arbitrary score of the total administered dose of GCS (r = 0.57, p < 0.05). These data suggest that neutrophil activation plays a minor role in asthma, and that treatment with GCS is not able to modify most functions of peripheral neutrophils in asthmatic subjects; chemotaxis seems to be related only to the severity of the asthma and it could reflect the improvement of the disease
- …
