58 research outputs found
Importance of interorbital charge transfers for the metal-to-insulator transition of BaVS
The underlying mechanism of the metal-to-insulator transition (MIT) in
BaVS is investigated, using dynamical mean-field theory in combination with
density functional theory. It is shown that correlation effects are responsible
for a strong charge redistribution, which lowers the occupancy of the broader
\a1g band in favor of the narrower bands. This resolves several
discrepancies between band theory and the experimental findings, such as the
observed value of the charge-density wave ordering vector associated with the
MIT, and the presence of local moments in the metallic phase.Comment: improved discussion, new figure, added reference
Electronic correlations in vanadium chalcogenides: BaVSe3 versus BaVS3
Albeit structurally and electronically very similar, at low temperature the
quasi-one-dimensional vanadium sulfide BaVS3 shows a metal-to-insulator
transition via the appearance of a charge-density-wave state, while BaVSe3
apparently remains metallic down to zero temperature. This different behavior
upon cooling is studied by means of density functional theory and its
combination with the dynamical mean-field theory and the rotationally-invariant
slave-boson method. We reveal several subtle differences between these
chalcogenides that provide indications for the deviant behavior of BaVSe3 at
low temperature. In this regard, a smaller Hubbard U in line with an increased
relevance of the Hund's exchange J plays a vital role.Comment: 16 pages, 11 figures, published versio
Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals
The description of realistic strongly correlated systems has recently
advanced through the combination of density functional theory in the local
density approximation (LDA) and dynamical mean field theory (DMFT). This
LDA+DMFT method is able to treat both strongly correlated insulators and
metals. Several interfaces between LDA and DMFT have been used, such as (N-th
order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions.
Such schemes are however either complex in use or additional simplifications
are often performed (i.e., the atomic sphere approximation). We present an
alternative implementation of LDA+DMFT, which keeps the precision of the
Wannier implementation, but which is lighter. It relies on the projection of
localized orbitals onto a restricted set of Kohn-Sham states to define the
correlated subspace. The method is implemented within the Projector Augmented
Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This
opens the way to electronic structure calculations within LDA+DMFT for more
complex structures with the precision of an all-electron method. We present an
application to two correlated systems, namely SrVO3 and beta-NiS (a
charge-transfer material), including ligand states in the basis-set. The
results are compared to calculations done with Maximally Localized Wannier
functions, and the physical features appearing in the orbitally resolved
spectral functions are discussed.Comment: 15 pages, 17 figure
Oxide Heterostructures from a Realistic Many-Body Perspective
Oxide heterostructures are a new class of materials by design, that open the
possibility for engineering challenging electronic properties, in particular
correlation effects beyond an effective single-particle description. This short
review tries to highlight some of the demanding aspects and questions,
motivated by the goal to describe the encountered physics from first
principles. The state-of-the-art methodology to approach realistic many-body
effects in strongly correlated oxides, the combination of density functional
theory with dynamical mean-field theory, will be briefly introduced. Discussed
examples deal with prominent Mott-band- and band-band-insulating type of oxide
heterostructures, where different electronic characteristics may be stabilized
within a single architectured oxide material.Comment: 19 pages, 9 figure
Hubbard band or oxygen vacancy states in the correlated electron metal SrVO?
We study the effect of oxygen vacancies on the electronic structure of the
model strongly correlated metal SrVO. By means of angle-resolved
photoemission (ARPES) synchrotron experiments, we investigate the systematic
effect of the UV dose on the measured spectra. We observe the onset of a
spurious dose-dependent prominent peak at an energy range were the lower
Hubbard band has been previously reported in this compound, raising questions
on its previous interpretation. By a careful analysis of the dose dependent
effects we succeed in disentangling the contributions coming from the oxygen
vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES
spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard
band remains. We support our study by means of state-of-the-art ab initio
calculations that include correlation effects and the presence of oxygen
vacancies. Our results underscore the relevance of potential spurious states
affecting ARPES experiments in correlated metals, which are associated to the
ubiquitous oxygen vacancies as extensively reported in the context of a
two-dimensional electron gas (2DEG) at the surface of insulating
transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems
Recent trends of ab initio studies and progress in methodologies for
electronic structure calculations of strongly correlated electron systems are
discussed. The interest for developing efficient methods is motivated by recent
discoveries and characterizations of strongly correlated electron materials and
by requirements for understanding mechanisms of intriguing phenomena beyond a
single-particle picture. A three-stage scheme is developed as renormalized
multi-scale solvers (RMS) utilizing the hierarchical electronic structure in
the energy space. It provides us with an ab initio downfolding of the global
band structure into low-energy effective models followed by low-energy solvers
for the models. The RMS method is illustrated with examples of several
materials. In particular, we overview cases such as dynamics of semiconductors,
transition metals and its compounds including iron-based superconductors and
perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an
invited review pape
In vivo cell tracking using pet: Opportunities and challenges for clinical translation in oncology
Data Availability Statement: Not applicable.Cell therapy is a rapidly evolving field involving a wide spectrum of therapeutic cells for personalised medicine in cancer. In vivo imaging and tracking of cells can provide useful information for improving the accuracy, efficacy, and safety of cell therapies. This review focuses on radiopharmaceuticals for the non-invasive detection and tracking of therapeutic cells using positron emission tomography (PET). A range of approaches for imaging therapeutic cells is discussed: Direct ex vivo labelling of cells, in vivo indirect labelling of cells by utilising gene reporters, and detection of specific antigens expressed on the target cells using antibody-based radiopharmaceuticals (immuno-PET). This review examines the evaluation of PET imaging methods for therapeutic cell tracking in preclinical cancer models, their role in the translation into patients, first-in-human studies, as well as the translational challenges involved and how they can be overcome.L.M.L. and F.A.G. have research grants from CRUK (C19212/A16628, C19212/A911376) and GlaxoSmithKline (RQAG/092)
Unconventional Hund Metal in a Weak Itinerant Ferromagnet
The physics of weak itinerant ferromagnets is challenging due to their small
magnetic moments and the ambiguous role of local interactions governing their
electronic properties, many of which violate Fermi liquid theory. While
magnetic fluctuations play an important role in the materials' unusual
electronic states, the nature of these fluctuations and the paradigms through
which they arise remain debated. Here we use inelastic neutron scattering to
study magnetic fluctuations in the canonical weak itinerant ferromagnet MnSi.
Data reveal that short-wavelength magnons continue to propagate until a mode
crossing predicted for strongly interacting quasiparticles is reached, and the
local susceptibility peaks at a coherence energy predicted for a correlated
Hund metal by first-principles many-body theory. Scattering between electrons
and orbital and spin fluctuations in MnSi can be understood at the local level
to generate non-Fermi liquid character. These results provide crucial insight
into the role of interorbital Hund's exchange within the broader class of
enigmatic multiband itinerant, weak ferromagnets.Comment: 17 pages, 4 figure
BaVS probed by V L edge X-ray absorption spectroscopy
Polarization dependent vanadium L edge X-ray absorption spectra of BaVS
single crystals are measured in the four phases of the compound. The difference
between signals with the polarization \textbf{E}\textbf{c} and
\textbf{E}\textbf{c} (linear dichroism) changes with temperature.
Besides increasing intensity of one of the maxima, a new structure appears in
the pre-edge region below the metal-insulator transition. More careful
examination brings to light that the changes start already with pretransitional
charge density wave fluctuations. Simple symmetry analysis suggests that the
effect is related to rearrangements in and states, and is
compatible with the formation of four inequivalent V sites along the V-S chain.Comment: 6 pages, 6 figure
- …
