71 research outputs found

    Chemical similarities between Galactic bulge and local thick disk red giant stars

    Get PDF
    The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.Comment: Accepted for publication in A&A, 5 page

    Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Bulge studies

    Full text link
    We use the Vista Variables in the Via Lactea (VVV) ESO public survey data to measure extinction values in the complete area of the Galactic bulge covered by the survey at high resolution. We derive reddening values using the method described in Paper I. This is based on measuring the mean (J-Ks) color of red clump giants in small subfields of 2' to 6' in the following bulge area: -10.3<b<+5.1 and -10<l<+10.4. To determine the reddening values E(J-Ks) for each region, we measure the RC color and compare it to the (J-Ks) color of RC stars measured in Baade's window, for which we adopt E(B-V)=0.55. This allows us to construct a reddening map sensitive to small scale variations minimizing the problems arising from differential extinction. The significant reddening variations are clearly observed on spatial scales as small as 2'. We find a good agreement between our extinction measurements and Schlegel maps in the outer bulge, but, as already stated in the literature the Schlegel maps are not reliable for regions within |b| < 6. In the inner regions we compare our results with maps derived from DENIS and Spitzer surveys. While we find good agreement with other studies in the corresponding overlapping regions, our extinction map has better quality due to both higher resolution and a more complete spatial coverage in the Bulge. We investigate the importance of differential reddening and demonstrate the need for high resolution extinction maps for detailed studies of Bulge stellar populations and structure. The extinction variations on scales of up to 2'-6', must be taken into account when analysing the stellar populations of the Bulge.Comment: Accepted for publication in A&

    Oxygen abundances in the Galactic Bulge: evidence for fast chemical enrichment

    Get PDF
    AIMS: We spectroscopically characterize the Galactic Bulge to infer its star formation timescale, compared to the other Galactic components, through the chemical signature on its individual stars. METHODS: We derived iron and oxygen abundances for 50 K giants in four fields towards the Galactic bulge. High resolution (R=45,000) spectra for the target stars were collected with FLAMES-UVES at the VLT. RESULTS: Oxygen, as measured from the forbidden line at 6300 \AA, shows a well-defined trend with [Fe/H], with [O/Fe] higher in bulge stars than in thick disk ones, which were known to be more oxygen enhanced than thin disk stars. CONCLUSIONS: These results support a scenario in which the bulge formed before and more rapidly than the disk, and therefore the MW bulge can be regarded as a prototypical old spheroid, with a formation history similar to that of early-type (elliptical) galaxies.Comment: A&A Letters, in pres

    Abundances in bulge stars from high-resolution, near-IR spectra I. The CNO elements observed during the science verification of CRIRES at VLT

    Full text link
    The formation and evolution of the Milky Way bulge is not yet well understood and its classification is ambiguous. Constraints can, however, be obtained by studying the abundances of key elements in bulge stars. The aim of this study is to determine the chemical evolution of CNO, and a few other elements in stars in the Galactic bulge, and to discuss the sensitivities of the derived abundances from molecular lines. High-resolution, near-IR spectra in the H band were recorded using VLT/CRIRES. Due to the high and variable visual extinction in the line-of-sight towards the bulge, an analysis in the near-IR is preferred. The CNO abundances can all be determined simultaneously from the numerous molecular lines in the wavelength range observed. The three giant stars in Baade's window presented here are the first bulge stars observed with CRIRES. We have especially determined the CNO abundances, with uncertainties of less than 0.20 dex, from CO, CN, and OH lines. Since the systematic uncertainties in the derived CNO abundances due to uncertainties in the stellar fundamental parameters, notably Teff, are significant, a detailed discussion of the sensitivities of the derived abundances is included. We find good agreement between near-IR and optically determined O, Ti, Fe, and Si abundances. Two of our stars show a solar [C+N/Fe], suggesting that these giants have experienced the first dredge-up and that the oxygen abundance should reflect the original abundance of the giants. The two giants fit into the picture, in which there is no significant difference between the O abundance in bulge and thick-disk stars. Our determination of the S abundances is the first for bulge stars. The high [S/Fe] values for all the stars indicate a high star-formation rate in an early phase of the bulge evolution.Comment: Accepted by A&

    Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants

    Full text link
    We obtained FLAMES-GIRAFFE spectra (R=22,500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b=-4, b=-6, b=-12. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b=-3 and 5 degrees away from the other three fields along the major axis. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b=-4 disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H]<-0.2) show a remarkable homogeneity at different bulge locations. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.Comment: 13 pages, 17 figures. Accepted for publication in Astronomy and Astrophysic

    The dilution peak, metallicity evolution, and dating of galaxy interactions and mergers

    Full text link
    Strong inflows of gas from the outer disk to the inner kiloparsecs are induced during the interaction of disk galaxies. This inflow of relatively low-metallicity gas dilutes the metallicity of the circumnuclear gas. We have investigated several aspects of the process as the timing and duration of the dilution and its correlation with the induced star formation. We analysed major (1:1) gas-rich interactions and mergers, spanning a range of initial orbital characteristics. Star formation and metal enrichment from SNe are included in our model. Our results show that the strongest trend is between the star formation rate and the dilution of the metals in the nuclear region; i.e., the more intense the central burst of star formation, the more the gas is diluted. This trend comes from strong inflows of relatively metal-poor gas from the outer regions of both disks, which fuels the intense star formation and lowers the overall metallicity for a time. The strong inflows happen on timescales of about 10^8 years or less, and the most intense star formation and lowest gas phase metallicities are seen generally after the first pericentre passage. As the star formation proceeds and the merger advances, the dilution reduces and enrichment becomes dominant - ultimately increasing the metallicity of the circumnuclear gas to a level higher than the initial metallicities of the merging galaxies. The "fly-bys" - pairs that interact but do not merge - also cause some dilution. We even see some dilution early in the merger or in the "fly-bys" and thus do not observe a strong trend between the nuclear metallicities and separation in our simulations until the merger is well advanced. We also analyse the O and Fe enrichment of the ISM, and show that the evolution of the alpha/Fe ratios, as well as the dilution of the central gas metallicity, can be used as a clock for "dating" the interaction.Comment: 13 pages, 11 figures, A&A in press. Final version after language editin

    The metallicity distribution of bulge clump giants in Baade's Window

    Full text link
    We seek to constrain the formation of the Galactic bulge by means of analysing the detailed chemical composition of a large sample of red clump stars in Baade's window. We measure [Fe/H] in a sample of 219 bulge red clump stars from R=20000 resolution spectra obtained with FLAMES/GIRAFFE at the VLT, using an automatic procedure, differentially to the metal-rich local reference star muLeo. For a subsample of 162 stars, we also derive [Mg/H] from spectral synthesis around the MgI triplet at 6319A. The Fe and Mg metallicity distributions are both asymmetric, with median values of +0.16 and +0.21 respectively. The iron distribution is clearly bimodal, as revealed both by a deconvolution (from observational errors) and a Gaussian decomposition. The decomposition of the observed Fe and Mg metallicity distributions into Gaussian components yields two populations of equal sizes (50% each): a metal-poor component centred around [Fe/H]=-0.30 and [Mg/H]=-0.06 with a large dispersion and a narrow metal-rich component centred around [Fe/H]=+0.32 and [Mg/H]=+0.35. The metal poor component shows high [Mg/Fe] ratios (around 0.3) whereas stars in the metal rich component are found to have near solar ratios. Babusiaux et al. (2010) also find kinematical differences between the two components: the metal poor component shows kinematics compatible with an old spheroid whereas the metal rich component is consistent with a population supporting a bar. In view of their chemical and kinematical properties, we suggest different formation scenarios for the two populations: a rapid formation timescale as an old spheroid for the metal poor component (old bulge) and for the metal rich component, a formation over a longer time scale driven by the evolution of the bar (pseudo-bulge).Comment: Accepted for publication in Astronomy & Astrophysic

    Chemical abundances and kinematics of a sample of metal-rich barium stars

    Full text link
    We determined the atmospheric parameters and abundance pattern for a sample of metal-rich barium stars. We used high-resolution optical spectroscopy. Atmospheric parameters and abundances were determined using the local thermodynamic equilibrium atmosphere models of Kurucz and the spectral analysis code MOOG. We show that the stars have enhancement factors, [s/Fe], from 0.25 to 1.16. Their abundance pattern of the Na, Al, alpha-elements, and iron group elements as well as their kinematical properties are similar to the characteristics of the other metal-rich and super metal-rich stars already analyzed. We conclude that metal-rich barium stars do not belong to the bulge population. We also show that metal-rich barium stars are useful targets for probing the s-process enrichment in high-metallicity environments.Comment: 21 pages, 9 figures, accepted for publication in in Astronomy and Astrophysic

    VLT-FLAMES Analysis of 8 giants in the Bulge Metal-poor Globular Cluster NGC 6522: Oldest Cluster in the Galaxy?

    Full text link
    NGC 6522 has been the first metal-poor globular cluster identified in the bulge by W. Baade. Despite its importance, very few high resolution abundance analyses of stars in this cluster are available in the literature. The bulge metal-poor clusters may be important tracers of the early chemical enrichment of the Galaxy. The main purpose of this study is the determination of metallicity and elemental ratios in individual stars of NGC 6522. High resolution spectra of 8 giants of the bulge globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the FLAMES+GIRAFFE spectrograph. Multiband V,I,J,Ks} photometry was used to derive effective temperatures as reference values. Spectroscopic parameters are derived from FeI and FeII lines, and adopted for the derivation of abundance ratios. The present analysis provides a metallicity [Fe/H] = -1.0+-0.2. The alpha-elements Oxygen, Magnesium and Silicon show [O/Fe]=+0.4, [Mg/Fe]=[Si/Fe]= +0.25, whereas Calcium and Titanium show shallower ratios of [Ca/Fe]=[Ti/Fe]=+0.15. The neutron-capture r-process element Europium appears to be overabundant by [Eu/Fe]=+0.4. The neutron-capture s-elements La and Ba are enhanced by [La/Fe]=+0.35 and [Ba/Fe]=+0.5. The large internal errors, indicating the large star-to-star variationin the Ba and Eu abundances, are also discussed. The moderate metallicity combined to a blue Horizontal Branch (BHB), are characteristics similar to those of HP~1 and NGC 6558, pointing to a population of very old globular clusters in the Galactic bulge. Also, the abundance ratios in NGC 6522 resemble those in HP 1 and NGC 6558. The ultimate conclusion is that the bulge is old, and went through an early prompt chemical enrichment.Comment: 18 pages, 16 figures. Astronomy & Astrophysics, accepte
    corecore