5,485 research outputs found
Extraplanar H II Regions in Spiral Galaxies. I. Low-Metallicity Gas Accreting through the Disk-Halo Interface of NGC 4013
The interstellar thick disks of galaxies serve as the interface between the
thin star-forming disk, where feedback-driven outflows originate, and the
distant halo, the repository for accreted gas. We present optical emission line
spectroscopy of a luminous thick disk H II region located at pc above
the plane of the spiral galaxy NGC 4013 taken with the Multi-Object Double
Spectrograph on the Large Binocular Telescope. This nebula, with an H
luminosity times that of the Orion nebula, surrounds a luminous
cluster of young, hot stars that ionize the surrounding interstellar gas of the
thick disk, providing a measure of the properties of that gas. We demonstrate
that strong emission line methods can provide accurate measures of relative
abundances between pairs of H II regions. From our emission line spectroscopy,
we show that the metal content of the thick disk H II region is a factor of
lower than gas in H II regions at the midplane of this galaxy (with
the relative abundance of O in the thick disk lower by dex).
This implies incomplete mixing of material in the thick disk on small scales
(100s of parsecs) and that there is accretion of low-metallicity gas through
the thick disks of spirals. The inclusion of low-metallicity gas this close to
the plane of NGC 4013 is reminiscent of the recently-proposed "fountain-driven"
accretion models.Comment: Astrophysical Journal, 856, 166; 16 pages. V2 includes journal
reference, very minor wording adjustments for consistenc
Low Redshift Intergalactic Absorption Lines in the Spectrum of HE0226-4110
We present an analysis of the FUSE and STIS E140M spectra of HE0226-4110
(z=0.495). We detect 56 Lyman absorbers and 5 O VI absorbers. The number of
intervening O VI systems per unit redshift with W>50 m\AA is dN(O VI)/dz~ 11.
The O VI systems unambiguously trace hot gas only in one case. For the 4 other
O VI systems, photoionization and collisional ionization models are viable
options to explain the observed column densities of the O VI and the other
ions. If the O VI systems are mostly photoionized, only a fraction of the
observed O VI will contribute to the baryonic density of the warm-hot ionized
medium (WHIM) along this line of sight. Combining our results with previous
ones, we show that there is a general increase of N(O VI) with increasing b(O
VI). Cooling flow models can reproduce the N-b distribution but fail to
reproduce the observed ionic ratios. A comparison of the number of O I, O II, O
III, O IV, and O VI systems per unit redshift show that the low-z IGM is more
highly ionized than weakly ionized. We confirm that photoionized O VI systems
show a decreasing ionization parameter with increasing H I column density. O VI
absorbers with collisional ionization/photoionization degeneracy follow this
relation, possibly suggesting that they are principally photoionized. We find
that the photoionized O VI systems in the low redshift IGM have a median
abundance of 0.3 solar. We do not find additional Ne VIII systems other than
the one found by Savage et al., although our sensitivity should have allowed
the detection of Ne VIII in O VI systems at T~(0.6-1.3)x10^6 K (if CIE
applies). Since the bulk of the WHIM is believed to be at temperatures T>10^6
K, the hot part of the WHIM remains to be discovered with FUV--EUV metal-line
transitions.Comment: Accepted for publication in the ApJS. Full resolution figures
available at
http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJS63975.preprint.pd
Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
Far Ultraviolet Spectroscopic Explorer observations are presented for
WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a
distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40
per 20 km/s resolution element and cover the wavelength range 905-1187 \AA.
LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II,
N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an
ionized nitrogen fraction of > 0.23. We determine the ratio (2). Assuming a standard interstellar
oxygen abundance, we derive . Using the
value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I
ratio is (2).Comment: accepted for publication in the ApJ
Dimension-Dependence of the Critical Exponent in Spherically Symmetric Gravitational Collapse
We study the critical behaviour of spherically symmetric scalar field
collapse to black holes in spacetime dimensions other than four. We obtain
reliable values for the scaling exponent in the supercritical region for
dimensions in the range . The critical exponent increases
monotonically to an asymptotic value at large of . The
data is well fit by a simple exponential of the form: .Comment: 5 pages, including 7 figures New version contains more data points,
one extra graph and more accurate error bars. No changes to result
Partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order
We calculate the partition function of partially quenched chiral perturbation
theory in the epsilon regime at next-to-leading order using the supersymmetry
method in the formulation without a singlet particle. We include a nonzero
imaginary chemical potential and show that the finite-volume corrections to the
low-energy constants and for the partially quenched partition
function, and hence for spectral correlation functions of the Dirac operator,
are the same as for the unquenched partition function. We briefly comment on
how to minimize these corrections in lattice simulations of QCD. As a side
result, we show that the zero-momentum integral in the formulation without a
singlet particle agrees with previous results from random matrix theory.Comment: 19 pages, 4 figures; minor changes, to appear in JHE
Hydroxymethylated Cytosines Are Associated with Elevated C to G Transversion Rates
It has long been known that methylated cytosines deaminate at higher rates than unmodified cytosines and constitute mutational hotspots in mammalian genomes. The repertoire of naturally occurring cytosine modifications, however, extends beyond 5-methylcytosine to include its oxidation derivatives, notably 5-hydroxymethylcytosine. The effects of these modifications on sequence evolution are unknown. Here, we combine base-resolution maps of methyl- and hydroxymethylcytosine in human and mouse with population genomic, divergence and somatic mutation data to show that hydroxymethylated and methylated cytosines show distinct patterns of variation and evolution. Surprisingly, hydroxymethylated sites are consistently associated with elevated C to G transversion rates at the level of segregating polymorphisms, fixed substitutions, and somatic mutations in tumors. Controlling for multiple potential confounders, we find derived C to G SNPs to be 1.43-fold (1.22-fold) more common at hydroxymethylated sites compared to methylated sites in human (mouse). Increased C to G rates are evident across diverse functional and sequence contexts and, in cancer genomes, correlate with the expression of Tet enzymes and specific components of the mismatch repair pathway (MSH2, MSH6, and MBD4). Based on these and other observations we suggest that hydroxymethylation is associated with a distinct mutational burden and that the mismatch repair pathway is implicated in causing elevated transversion rates at hydroxymethylated cytosines
Towards the Final Fate of an Unstable Black String
Black strings, one class of higher dimensional analogues of black holes, were
shown to be unstable to long wavelength perturbations by Gregory and Laflamme
in 1992, via a linear analysis. We revisit the problem through numerical
solution of the full equations of motion, and focus on trying to determine the
end-state of a perturbed, unstable black string. Our preliminary results show
that such a spacetime tends towards a solution resembling a sequence of
spherical black holes connected by thin black strings, at least at intermediate
times. However, our code fails then, primarily due to large gradients that
develop in metric functions, as the coordinate system we use is not well
adapted to the nature of the unfolding solution. We are thus unable to
determine how close the solution we see is to the final end-state, though we do
observe rich dynamical behavior of the system in the intermediate stages.Comment: 17 pages, 7 figure
Robustness of the Blandford-Znajek mechanism
The Blandford-Znajek mechanism has long been regarded as a key ingredient in
models attempting to explain powerful jets in AGNs, quasars, blazzars etc. In
such mechanism, energy is extracted from a rotating black hole and dissipated
at a load at far distances. In the current work we examine the behaviour of the
BZ mechanism with respect to different boundary conditions, revealing the
mechanism robustness upon variation of these conditions. Consequently, this
work closes a gap in our understanding of this important scenario.Comment: 7 pages, accepted in CQ
- …
