2,637 research outputs found
Recovery of a quarkonium system from experimental data
For confining potentials of the form q(r)=r+p(r), where p(r) decays rapidly
and is smooth for r>0, it is proved that q(r) can be uniquely recovered from
the data {E_j,s_j}, where E_j are the bound states energies and s_j are the
values of u'_j(0), and u_j(r) are the normalized eigenfunctions of the problem
-u_j" +q(r)u_j=E_ju_j, r>0, u_j(0)=0, ||u_j||=1, where the norm is L^2(0,
\infty) norm. An algorithm is given for recovery of p(r) from few experimental
data
Diffusion of a granular pulse in a rotating drum
The diffusion of a pulse of small grains in an horizontal rotating drum is
studied through discrete elements methods simulations. We present a theoretical
analysis of the diffusion process in a one-dimensional confined space in order
to elucidate the effect of the confining end-plate of the drum. We then show
that the diffusion is neither subdiffusive nor superdiffusive but normal. This
is demonstrated by rescaling the concentration profiles obtained at various
stages and by studying the time evolution of the mean squared deviation.
Finally we study the self-diffusion of both large and small grains and we show
that it is normal and that the diffusion coefficient is independent of the
grain size
Example of two different potentials which have practically the same fixed-energy phase shifts
It is shown that the Newton-Sabatier procedure for inverting the fixed-energy
phase shifts for a potential is not an inversion method but a parameter-fitting
procedure. Theoretically there is no guarantee that this procedure is
applicable to the given set of the phase shifts, if it is applicable, there is
no guaran- tee that the potential it produces generates the phase shifts from
which it was reconstructed. Moreover, no generic potential, specifically, no
potential which is not analytic in a neighborhood of the positive real semiaxis
can be reconstructed by the Newton-Sabatier procedure.
A numerical method is given for finding spherically symmetric compactly
supported potentials which produce practically the same set of fixed-energy
phase shifts for all values of angular momentum. Concrete example of such
potentials is given
Effects of Noise in a Cortical Neural Model
Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made
long-term observations of spontaneous activity of in-vitro cortical networks,
which differ from predictions of current models in many features. In this paper
we generalize the EI cortical model introduced in a previous paper (S.Scarpetta
et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing
effects of noise on the spontaneous activity of the nonlinear system, in order
to account for the experimental results of Segev et al.. Analytically we can
distinguish different regimes of activity, depending from the model parameters.
Using analytical results as a guide line, we perform simulations of the
nonlinear stochastic model in two different regimes, B and C. The Power
Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI)
distributions are computed, and compared with experimental results. In regime B
the network shows stochastic resonance phenomena and noise induces aperiodic
collective synchronous oscillations that mimic experimental observations at 0.5
mM Ca concentration. In regime C the model shows spontaneous synchronous
periodic activity that mimic activity observed at 1 mM Ca concentration and the
PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments
at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function
effects) the PSD shows a broad band peak at low frequency. This feature,
observed experimentally, does not find explanation in the previous models.
Besides we identify parametric changes (namely increase of noise or decreasing
of excitatory connections) that reproduces the fading of periodicity found
experimentally at long times, and we identify a way to discriminate between
those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.
Convergence of expansions in Schr\"odinger and Dirac eigenfunctions, with an application to the R-matrix theory
Expansion of a wave function in a basis of eigenfunctions of a differential
eigenvalue problem lies at the heart of the R-matrix methods for both the
Schr\"odinger and Dirac particles. A central issue that should be carefully
analyzed when functional series are applied is their convergence. In the
present paper, we study the properties of the eigenfunction expansions
appearing in nonrelativistic and relativistic -matrix theories. In
particular, we confirm the findings of Rosenthal [J. Phys. G: Nucl. Phys. 13,
491 (1987)] and Szmytkowski and Hinze [J. Phys. B: At. Mol. Opt. Phys. 29, 761
(1996); J. Phys. A: Math. Gen. 29, 6125 (1996)] that in the most popular
formulation of the R-matrix theory for Dirac particles, the functional series
fails to converge to a claimed limit.Comment: Revised version, accepted for publication in Journal of Mathematical
Physics, 21 pages, 1 figur
Topological model of soap froth evolution with deterministic T2-processes
We introduce a topological model for the evolution of 2d soap froth. The
topological rearrangements (T2 processes) are deterministic (unlike the
standard stochastic model): the final topology depends on the areas of the
neighboring cells. The new model gives agreement with experiments in the
transient regime, where the previous models failed qualitatively, and also
improves agreement in the scaling state.Comment: latex, 12 pages, 2 figure
Inverse eigenvalue problem for discrete three-diagonal Sturm-Liouville operator and the continuum limit
In present article the self-contained derivation of eigenvalue inverse
problem results is given by using a discrete approximation of the Schroedinger
operator on a bounded interval as a finite three-diagonal symmetric Jacobi
matrix. This derivation is more correct in comparison with previous works which
used only single-diagonal matrix. It is demonstrated that inverse problem
procedure is nothing else than well known Gram-Schmidt orthonormalization in
Euclidean space for special vectors numbered by the space coordinate index. All
the results of usual inverse problem with continuous coordinate are reobtained
by employing a limiting procedure, including the Goursat problem -- equation in
partial derivatives for the solutions of the inversion integral equation.Comment: 19 pages There were made some additions (and reformulations) to the
text making the derivation of the results more precise and understandabl
Whittaker-Hill equation and semifinite-gap Schroedinger operators
A periodic one-dimensional Schroedinger operator is called semifinite-gap if
every second gap in its spectrum is eventually closed. We construct explicit
examples of semifinite-gap Schroedinger operators in trigonometric functions by
applying Darboux transformations to the Whittaker-Hill equation. We give a
criterion of the regularity of the corresponding potentials and investigate the
spectral properties of the new operators.Comment: Revised versio
GAP WORK project report: training for youth practitioners on tackling gender-related violence
This project sought to challenge gender-related violence against (and by) children and young people by developing training for practitioners who have everyday contact with general populations of children and young people (‘youth practitioners’). Through improved knowledge and understanding practitioners can better identify and challenge sexist, sexualising, homophobic or controlling language and behaviour, and know when and how to refer children and young people to the most appropriate support services. This summary outlines the Project and our initial findings about the success of the four training programmes developed and piloted.Co-funded by the DAPHNE III programme of the EU
- …
