8,118 research outputs found

    ELSA: An Integrated, Semi-Automated Nebular Abundance Package

    Full text link
    We present ELSA, a new modular software package, written in C, to analyze and manage spectroscopic data from emission-line objects. In addition to calculating plasma diagnostics and abundances from nebular emission lines, the software provides a number of convenient features including the ability to ingest logs produced by IRAF's splot task, to semi-automatically merge spectra in different wavelength ranges, and to automatically generate various data tables in machine-readable or LaTeX format. ELSA features a highly sophisticated interstellar reddening correction scheme that takes into account temperature and density effects as well as He II contamination of the hydrogen Balmer lines. Abundance calculations are performed using a 5-level atom approximation with recent atomic data, based on R. Henry's ABUN program. Improvements planned in the near future include use of a three-region ionization model, similar to IRAF's nebular package, error propagation, and the addition of ultraviolet and infrared line analysis capability. Detailed documentation for all aspects of ELSA are available at http://www.williams.edu/Astronomy/research/PN .Comment: 2 pages, contributed paper, IAU Symp. 234, Planetary Nebulae in Our Galaxy and Beyon

    Tungsten resonance integrals and Doppler coefficients Third quarterly report, Jan. - Mar. 1966

    Get PDF
    Reactivities, Doppler coefficients, and resonance integrals for tungsten isotope

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    Telecommunications systems design techniques handbook

    Get PDF
    Handbook presents design and analysis of tracking, telemetry, and command functions utilized in these systems with particular emphasis on deep-space telecommunications. Antenna requirements are also discussed. Handbook provides number of tables outlining various performance criteria. Block diagrams and performance charts are also presented

    Processing and Transmission of Information

    Get PDF
    Contains reports on four research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013

    Glassy Dynamics of Protein Folding

    Full text link
    A coarse grained model of a random polypeptide chain, with only discrete torsional degrees of freedom and Hookean springs connecting pairs of hydrophobic residues is shown to display stretched exponential relaxation under Metropolis dynamics at low temperatures with the exponent β1/4\beta\simeq 1/4, in agreement with the best experimental results. The time dependent correlation functions for fluctuations about the native state, computed in the Gaussian approximation for real proteins, have also been found to have the same functional form. Our results indicate that the energy landscape exhibits universal features over a very large range of energies and is relatively independent of the specific dynamics.Comment: RevTeX, 4 pages, multicolumn, including 5 figures; larger computations performed, error bars improve

    Processing and Transmission of Information

    Get PDF
    Contains reports on five research projects.National Aeronautics and Space Administration (Grant NGL 22-009-013)National Science Foundation (Grant GK-5800

    Quantum Zeno dynamics of a field in a cavity

    Full text link
    We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evolution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal

    Processing and Transmission of Information

    Get PDF
    Contains reports on three research projects.National Aeronautics and Space Administration (Grant NGL-22-009-013)Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E

    Protein dynamics with off-lattice Monte Carlo moves

    Full text link
    A Monte Carlo method for dynamics simulation of all-atom protein models is introduced, to reach long times not accessible to conventional molecular dynamics. The considered degrees of freedom are the dihedrals at Cα_\alpha-atoms. Two Monte Carlo moves are used: single rotations about torsion axes, and cooperative rotations in windows of amide planes, changing the conformation globally and locally, respectively. For local moves Jacobians are used to obtain an unbiased distribution of dihedrals. A molecular dynamics energy function adapted to the protein model is employed. A polypeptide is folded into native-like structures by local but not by global moves.Comment: 10 pages, 4 Postscript figures, uses epsf.sty and a4.sty; scheduled tentatively for Phys.Rev.E issue of 1 March 199
    corecore