73,613 research outputs found
The heavy-element abundances of AGB stars and the angular momentum conservation model of wind accretion for barium stars
Adpoting new s-process nucleosynthesis scenario and branch s-process path, we
calculate the heavy-element abundances and C/O ratio of solar metallicity
3M_sun TP-AGB stars. The evolutionary sequence from M to S to C stars of AGB
stars is explained naturally by the calculated results. Then combining the
angular momentum conservation model of wind accretion with the heavy-element
abundances on the surface of TP-AGB stars, we calculate the heavy-element
overabundances of barium stars via successive pulsed accreting and mixing. Our
results support that the barium stars with longer orbital period, P>1600 days,
form through wind accretion scenario.Comment: 14 pages, LaTex, 17 PS figures included, accepted for publication in
A &
Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects
Starting from the Hamiltonian operator of the noncompensated two-sublattice
model of a small antiferromagnetic particle, we derive the effective Lagrangian
of a biaxial antiferromagnetic particle in an external magnetic field with the
help of spin-coherent-state path integrals. Two unequal level-shifts induced by
tunneling through two types of barriers are obtained using the instanton
method. The energy spectrum is found from Bloch theory regarding the periodic
potential as a superlattice. The external magnetic field indeed removes
Kramers' degeneracy, however a new quenching of the energy splitting depending
on the applied magnetic field is observed for both integer and half-integer
spins due to the quantum interference between transitions through two types of
barriers.Comment: 9 pages, Latex, 4 Postscript figure
Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
Isotropic Quenched Disorder Triggers a Robust Nematic State in Electron-Doped Pnictides
The phase diagram of electron-doped pnictides is studied varying the
temperature, electronic density, and isotropic quenched disorder strength by
means of computational techniques applied to a three-orbital (, , )
spin-fermion model with lattice degrees of freedom. In experiments, chemical
doping introduces disorder but in theoretical studies the relationship between
electronic doping and the randomly located dopants, with their associated
quenched disorder, is difficult to address. In this publication, the use of
computational techniques allows us to study independently the effects of
electronic doping, regulated by a global chemical potential, and impurity
disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations
reveal that the fast reduction with doping of the N\'eel and the
structural transition temperatures, and the concomitant stabilization of
a robust nematic state, is primarily controlled by the magnetic dilution
associated with the in-plane isotropic disorder introduced by Fe substitution.
In the doping range studied, changes in the Fermi Surface produced by electron
doping affect only slightly both critical temperatures.Comment: 12 pages, 8 figure
- …
