1,140 research outputs found
Entwicklung von Verfahren zur Herstellung von Urankarbiden sowie Cermets auf UC-Basis: Herstellung von Uran-Karbid-Brennstoffen. EUR 354. = Development of methods for the preparation of aranium carbides and cermets based on UC: Development of uranium carbide fuels. EUR 354.
Herstellung von rundgehämmerten UO2-Brennelementen. EUR 353. = Production of round-hammered UO2 fuel assembly. EUR 353.
Quantum Monte Carlo scheme for frustrated Heisenberg antiferromagnets
When one tries to simulate quantum spin systems by the Monte Carlo method,
often the 'minus-sign problem' is encountered. In such a case, an application
of probabilistic methods is not possible. In this paper the method has been
proposed how to avoid the minus sign problem for certain class of frustrated
Heisenberg models. The systems where this method is applicable are, for
instance, the pyrochlore lattice and the Heisenberg model. The method
works in singlet sector. It relies on expression of wave functions in dimer
(pseudo)basis and writing down the Hamiltonian as a sum over plaquettes. In
such a formulation, matrix elements of the exponent of Hamiltonian are
positive.Comment: 19 LaTeX pages, 6 figures, 1 tabl
Semiclassical spin liquid state of easy axis Kagome antiferromagnets
Motivated by recent experiments on Nd-langasite, we consider the effect of
strong easy axis single-ion anisotropy on spins interacting with
antiferromagnetic exchange on the Kagome lattice. When , the
collinear low energy states selected by the anisotropy map on to configurations
of the classical Kagome lattice Ising antiferromagnet. However, the low
temperature limit is quite different from the cooperative Ising paramagnet that
obtains classically for . We find that sub-leading multi-spin interactions arising from the transverse quantum
dynamics result in a crossover from an intermediate temperature classical
cooperative Ising paramagnet to a semiclassical spin liquid with distinct
short-ranged correlations for .Comment: 4 pages, 3 eps figure
Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene
Using the recently developed technique of microsoldering, we perform a
systematic transport study of the influence of PMMA on graphene flakes
revealing a doping effect of up to 3.8x10^12 1/cm^2, but a negligible influence
on mobility and gate voltage induced hysteresis. Moreover, we show that the
microsoldered graphene is free of contamination and exhibits a very similar
intrinsic rippling as has been found for lithographically contacted flakes.
Finally, we demonstrate a current induced closing of the previously found
phonon gap appearing in scanning tunneling spectroscopy experiments, strongly
non-linear features at higher bias probably caused by vibrations of the flake
and a B-field induced double peak attributed to the 0.Landau level of graphene.Comment: 8 pages, 3 figure
Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene
Suspended graphene is difficult to image by scanning probe microscopy due to
the inherent van-der-Waals and dielectric forces exerted by the tip which are
not counteracted by a substrate. Here, we report scanning tunneling microscopy
data of suspended monolayer graphene in constant-current mode revealing a
surprising honeycomb structure with amplitude of 50200 pm and lattice
constant of 10-40 nm. The apparent lattice constant is reduced by increasing
the tunneling current , but does not depend systematically on tunneling
voltage or scan speed . The honeycomb lattice of the rippling
is aligned with the atomic structure observed on supported areas, while no
atomic corrugation is found on suspended areas down to the resolution of about
pm. We rule out that the honeycomb structure is induced by the feedback
loop using a changing , that it is a simple enlargement effect of
the atomic resolution as well as models predicting frozen phonons or standing
phonon waves induced by the tunneling current. Albeit we currently do not have
a convincing explanation for the observed effect, we expect that our intriguing
results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in
vdW parameter
Antiferromagnetic Quantum Spins on the Pyrochlore Lattice
The ground state of the S=1/2 Heisenberg antiferromagnet on the pyrochlore
lattice is theoretically investigated. Starting from the limit of isolated
tetrahedra, I include interactions between the tetrahedra and obtain an
effective model for the spin-singlet ground state multiplet by third-order
perturbation. I determine its ground state using the mean-field approximation
and found a dimerized state with a four-sublattice structure, which agrees with
the proposal by Harris et al. I also discuss chirality correlations and spin
correlations for this state.Comment: 4 pages in 2-column format, 5 figures; To appear in J. Phys. Soc.
Jpn. (Mar, 2001
Entwicklung von Verfahren zur Herstellung von Urankarbiden sowie Cermets auf UC-Basis. EUR 355. = Development of methods for the production of uranium carbides and cermets on UC basis. EUR 355.
An atom interferometer enabled by spontaneous decay
We investigate the question whether Michelson type interferometry is possible
if the role of the beam splitter is played by a spontaneous process. This
question arises from an inspection of trajectories of atoms bouncing
inelastically from an evanescent-wave (EW) mirror. Each final velocity can be
reached via two possible paths, with a {\it spontaneous} Raman transition
occurring either during the ingoing or the outgoing part of the trajectory. At
first sight, one might expect that the spontaneous character of the Raman
transfer would destroy the coherence and thus the interference. We investigated
this problem by numerically solving the Schr\"odinger equation and applying a
Monte-Carlo wave-function approach. We find interference fringes in velocity
space, even when random photon recoils are taken into account.Comment: 6 pages, 5 figures, we clarified the semiclassical interpretation of
Fig.
Recommended from our members
Seasonal cycle of precipitation variability in South America on intraseasonal timescales
The seasonal cycle of the intraseasonal (IS) variability of precipitation in South America is described through the analysis of bandpass filtered outgoing longwave radiation (OLR) anomalies. The analysis is discriminated between short (10--30 days) and long (30--90 days) intraseasonal timescales. The seasonal cycle of the 30--90-day IS variability can be well described by the activity of first leading pattern (EOF1) computed separately for the wet season (October--April) and the dry season (May--September). In agreement with previous works, the EOF1 spatial distribution during the wet season is that of a dipole with centers of actions in the South Atlantic Convergence Zone (SACZ) and southeastern South America (SESA), while during the dry season, only the last center is discernible. In both seasons, the pattern is highly influenced by the activity of the Madden--Julian Oscillation (MJO). Moreover, EOF1 is related with a tropical zonal-wavenumber-1 structure superposed with coherent wave trains extended along the South Pacific during the wet season, while during the dry season the wavenumber-1 structure is not observed. The 10--30-day IS variability of OLR in South America can be well represented by the activity of the EOF1 computed through considering all seasons together, a dipole but with the stronger center located over SESA. While the convection activity at the tropical band does not seem to influence its activity, there are evidences that the atmospheric variability at subtropical-extratropical regions might have a role. Subpolar wavetrains are observed in the Pacific throughout the year and less intense during DJF, while a path of wave energy dispersion along a subtropical wavetrain also characterizes the other seasons. Further work is needed to identify the sources of the 10--30-day-IS variability in South America
- …
