25 research outputs found
Klog kapital, social kapital og finansiel kapital: Episoder i formidlingen af kapital i den videnbaserede økonomi
Finansiering af videnbaserede projekter og virksomheder er vigtig i vidensamfundet. Denne artikel handler om, hvorledes denne finansieringsproces ser ud. Den analyserer på basis af interviews med kapitalmarkedets aktører, hvorledes samspillet mellem analytikere og projektmagere gradvist ændrer en teknologisk eller immateriel idé til en virksomhed med en teknokommerciel dagsorden. Det vises, hvorledes denne finansieringsproces hverken begynder eller ender med overdragelse af finansiel kapital. Klog og social kapital er helt centrale elementer, hvorigennem analytikere og kapitalformidlere leverer viden om virksomhed og netværk, som disciplinerer entreprenøren, som gør projektet til en virksomhed, og som giver den finansielle kapital sin effektivitet – så forretning også bliver forrentning
Remote reef cryptobenthic diversity: Integrating autonomous reef monitoring structures and in situ environmental parameters
Coral reef sessile organisms inhabiting cryptic spaces and cavities of the reef matrix perform vital and varied functional roles but are often understudied in comparison to those on exposed surfaces. Here, we assess the composition of cryptobenthic taxa from three remote tropical reef sites (Central Indian Ocean) alongside a suite of in situ environmental parameters to determine if, or how, significant patterns of diversity are shaped by local abiotic factors. To achieve this, we carried out a point-count analysis of autonomous reef monitoring structure (ARMS) plate images and employed in situ instrumentation to recover long-term (12 months) profiles of flow velocity, wave heights, temperature, dissolved oxygen, and salinity, and short-term (3 weeks) profiles of light and pH. We recovered distinct environmental profiles between sampling sites and observed that ocean-facing reefs experienced frequent but short-lived cooling internal wave events and that these were key in shaping in situ temperature variability. By comparing temperature and wave height profiles recovered using in situ loggers with ex situ models, we discovered that global satellite products either failed to recover site-specific profiles or both over- and underestimated actual in situ conditions. We found that site choice and recruitment plate face (top or bottom) significantly impacted the percentage cover of bryozoans, gastropods, soft and calcified tube worms, as well as crustose coralline algae (CCA) and fleshy red, brown, and green encrusting macroalgae on ARMS. We observed significant correlations between the abundance of bryozoans, CCA, and colonial tunicates with lower mean temperature and higher mean dissolved oxygen profiles observed across sites. Red and brown encrusting macroalgae abundance correlated significantly with medium-to-high flow velocities and wave height profiles, as well as higher pH and dissolved oxygen. This study provides the first insight into cryptobenthic communities in the Chagos Archipelago marine-protected area and adds to our limited understanding of tropical reef sessile communities and their associations with environmental parameters in this region. With climate change accelerating the decline of reef ecosystems, integrating analyses of cryptobenthic organisms and in situ physicochemical factors are needed to understand how reef communities, if any, may withstand the impacts of climate change
A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordtribute to global conservation targets, we review outcomes of the last decade of marine conservation research in the British
Indian Ocean Territory (BIOT), one of the largest MPAs in the world. The BIOT MPA consists of the atolls of the Chagos
Archipelago, interspersed with and surrounded by deep oceanic waters. Islands around the atoll rims serve as nesting grounds
for sea birds. Extensive and diverse shallow and mesophotic reef habitats provide essential habitat and feeding grounds for
all marine life, and the absence of local human impacts may improve recovery after coral bleaching events. Census data
have shown recent increases in the abundance of sea turtles, high numbers of nesting seabirds and high fsh abundance, at
least some of which is linked to the lack of recent harvesting. For example, across the archipelago the annual number of
green turtle clutches (Chelonia mydas) is~20,500 and increasing and the number of seabirds is ~1 million. Animal tracking
studies have shown that some taxa breed and/or forage consistently within the MPA (e.g. some reef fshes, elasmobranchs
and seabirds), suggesting the MPA has the potential to provide long-term protection. In contrast, post-nesting green turtles
travel up to 4000 km to distant foraging sites, so the protected beaches in the Chagos Archipelago provide a nesting sanctuary for individuals that forage across an ocean basin and several geopolitical borders. Surveys using divers and underwater
video systems show high habitat diversity and abundant marine life on all trophic levels. For example, coral cover can be
as high as 40–50%. Ecological studies are shedding light on how remote ecosystems function, connect to each other and
respond to climate-driven stressors compared to other locations that are more locally impacted. However, important threats
to this MPA have been identifed, particularly global heating events, and Illegal, Unreported and Unregulated (IUU) fshing
activity, which considerably impact both reef and pelagic fshes.Bertarelli Foundatio
Diabetes is associated with doubling in risk of atrial fibrillation compared to the background population: a nationwide study
DataSheet_1_Remote reef cryptobenthic diversity: Integrating autonomous reef monitoring structures and in situ environmental parameters.zip
Coral reef sessile organisms inhabiting cryptic spaces and cavities of the reef matrix perform vital and varied functional roles but are often understudied in comparison to those on exposed surfaces. Here, we assess the composition of cryptobenthic taxa from three remote tropical reef sites (Central Indian Ocean) alongside a suite of in situ environmental parameters to determine if, or how, significant patterns of diversity are shaped by local abiotic factors. To achieve this, we carried out a point-count analysis of autonomous reef monitoring structure (ARMS) plate images and employed in situ instrumentation to recover long-term (12 months) profiles of flow velocity, wave heights, temperature, dissolved oxygen, and salinity, and short-term (3 weeks) profiles of light and pH. We recovered distinct environmental profiles between sampling sites and observed that ocean-facing reefs experienced frequent but short-lived cooling internal wave events and that these were key in shaping in situ temperature variability. By comparing temperature and wave height profiles recovered using in situ loggers with ex situ models, we discovered that global satellite products either failed to recover site-specific profiles or both over- and underestimated actual in situ conditions. We found that site choice and recruitment plate face (top or bottom) significantly impacted the percentage cover of bryozoans, gastropods, soft and calcified tube worms, as well as crustose coralline algae (CCA) and fleshy red, brown, and green encrusting macroalgae on ARMS. We observed significant correlations between the abundance of bryozoans, CCA, and colonial tunicates with lower mean temperature and higher mean dissolved oxygen profiles observed across sites. Red and brown encrusting macroalgae abundance correlated significantly with medium-to-high flow velocities and wave height profiles, as well as higher pH and dissolved oxygen. This study provides the first insight into cryptobenthic communities in the Chagos Archipelago marine-protected area and adds to our limited understanding of tropical reef sessile communities and their associations with environmental parameters in this region. With climate change accelerating the decline of reef ecosystems, integrating analyses of cryptobenthic organisms and in situ physicochemical factors are needed to understand how reef communities, if any, may withstand the impacts of climate change.</p
Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance
AbstractTransposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) levels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern and microarray hybridizations. MPK4 kinase activity is required to repress SAR, as an inactive MPK4 form failed to complement mpk4. Analysis of mpk4 expressing the SA hydroxylase NahG and of mpk4/npr1 double mutants indicated that SAR expression in mpk4 is dependent upon elevated SA levels but is independent of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid–responsive gene expression
