600 research outputs found
Reverse engineering a spectrum: using fluorescent spectra of molecular hydrogen to recreate the missing Lyman-α line of pre-main sequence stars
The hydrogen Lyman-α (Lyα) line, a major source of ionization of metals in the circumstellar disks of pre-main sequence (PMS) stars, is usually not observed due to absorption by interstellar and circumstellar hydrogen. We have developed a technique to reconstruct the intrinsic Lyα line using the observed emission in the H2 B-X lines that are fluoresced by Lyα. We describe this technique and the subsequent analysis of the ultraviolet (UV) spectra of the TW Hya, RU Lupi and other PMS stars. We find that the reconstructed Lyα lines are indeed far brighter than any other feature in the UV spectra of these stars and therefore play an important role in the ionization and heating of the outer layers of circumstellar disks
Lyman alpha initiated winds in late-type stars
The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined
Chemical Abundance Constraints on White Dwarfs as Halo Dark Matter
We examine the chemical abundance constraints on a population of white dwarfs
in the Halo of our Galaxy. We are motivated by microlensing evidence for
massive compact halo objects (Machos) in the Galactic Halo, but our work
constrains white dwarfs in the Halo regardless of what the Machos are. We focus
on the composition of the material that would be ejected as the white dwarfs
are formed; abundance patterns in the ejecta strongly constrain white dwarf
production scenarios. Using both analytical and numerical chemical evolution
models, we confirm that very strong constraints come from Galactic Pop II and
extragalactic carbon abundances. We also point out that depending on the
stellar model, significant nitrogen is produced rather than carbon. The
combined constraints from C and N give from
comparison with the low C and N abundances in the Ly forest. We note,
however, that these results are subject to uncertainties regarding the
nucleosynthesis of low-metallicity stars. We thus investigate additional
constraints from D and He, finding that these light elements can be kept
within observational limits only for \Omega_{WD} \la 0.003 and for a white
dwarf progenitor initial mass function sharply peaked at low mass (2).
Finally, we consider a Galactic wind, which is required to remove the ejecta
accompanying white dwarf production from the galaxy. We show that such a wind
can be driven by Type Ia supernovae arising from the white dwarfs themselves,
but these supernovae also lead to unacceptably large abundances of iron. We
conclude that abundance constraints exclude white dwarfs as Machos. (abridged)Comment: Written in AASTeX, 26 pages plus 4 ps figure
Deuterium Toward WD1634-573: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
We use Far Ultraviolet Spectrocopic Explorer (FUSE) observations to study
interstellar absorption along the line of sight to the white dwarf WD1634-573
(d=37.1+/-2.6 pc). Combining our measurement of D I with a measurement of H I
from Extreme Ultraviolet Explorer data, we find a D/H ratio toward WD1634-573
of D/H=(1.6+/-0.5)e-5. In contrast, multiplying our measurements of D I/O
I=0.035+/-0.006 and D I/N I=0.27+/-0.05 with published mean Galactic ISM gas
phase O/H and N/H ratios yields D/H(O)=(1.2+/-0.2)e-5 and
D/H(N)=(2.0+/-0.4)e-5, respectively. Note that all uncertainties quoted above
are 2 sigma. The inconsistency between D/H(O) and D/H(N) suggests that either
the O I/H I and/or the N I/H I ratio toward WD1634-573 must be different from
the previously measured average ISM O/H and N/H values. The computation of
D/H(N) from D I/N I is more suspect, since the relative N and H ionization
states could conceivably vary within the LISM, while the O and H ionization
states will be more tightly coupled by charge exchange.Comment: 23 pages, 5 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty;
accepted by ApJ Supplemen
Simulation of Lunar Surface Communications Network Exploration Scenarios
Simulations and modeling of surface-based communications networks provides a rapid and cost effective means of requirement analysis, protocol assessments, and tradeoff studies. Robust testing in especially important for exploration systems, where the cost of deployment is high and systems cannot be easily replaced or repaired. However, simulation of the envisioned exploration networks cannot be achieved using commercial off the shelf network simulation software. Models for the nonstandard, non-COTS protocols used aboard space systems are not readily available. This paper will address the simulation of realistic scenarios representative of the activities which will take place on the surface of the Moon, including selection of candidate network architectures, and the development of an integrated simulation tool using OPNET modeler capable of faithfully modeling those communications scenarios in the variable delay, dynamic surface environments. Scenarios for exploration missions, OPNET development, limitations, and simulations results will be provided and discussed
Deuterium toward the WD0621-376 sight line: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission
Far Ultraviolet Spectroscopic Explorer observations are presented for
WD0621-376, a DA white dwarf star in the local interstellar medium (LISM) at a
distance of about 78 pc. The data have a signal-to-noise ratio of about 20-40
per 20 km/s resolution element and cover the wavelength range 905-1187 \AA.
LISM absorption is detected in the lines of D I, C II, C II*, C III, N I, N II,
N III, O I, Ar I, and Fe II. This sight line is partially ionized, with an
ionized nitrogen fraction of > 0.23. We determine the ratio (2). Assuming a standard interstellar
oxygen abundance, we derive . Using the
value of N(H I) derived from EUVE data gives a similar D/H ratio. The D I/N I
ratio is (2).Comment: accepted for publication in the ApJ
The Ionization of the Local Interstellar Medium, as Revealed by FUSE Observations of N, O and Ar toward White Dwarf Stars
FUSE spectra of the white dwarf stars G191-B2B, GD 394, WD 2211-495 and WD
2331-475 cover the absorption features out of the ground electronic states of N
I, N II, N III, O I and Ar I in the far ultraviolet, providing new insights on
the origin of the partial ionization of the Local Interstellar Medium (LISM),
and for the case of G191-B2B, the interstellar cloud that immediately surrounds
the solar system. Toward these targets the interstellar abundances of Ar I, and
sometimes N I, are significantly below their cosmic abundances relative to H I.
In the diffuse interstellar medium, these elements are not likely to be
depleted onto dust grains. Generally, we expect that Ar should be more strongly
ionized than H (and also O and N whose ionizations are coupled to that of H via
charge exchange reactions) because the cross section for the photoionization of
Ar I is very high. Our finding that Ar I/H I is low may help to explain the
surprisingly high ionization of He in the LISM found by other investigators.
Our result favors the interpretation that the ionization of the local medium is
maintained by a strong EUV flux from nearby stars and hot gases, rather than an
incomplete recovery from a past, more highly ionized condition.Comment: 13 pages, 2 figures. To appear in a special issue of the
Astrophysical Journal Letters devoted to the first scientific results from
the FUSE missio
What is the Total Deuterium Abundance in the Local Galactic Disk?
Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer
(FUSE) satellite, together with spectra from the Copernicus and IMAPS
instruments, reveal an unexplained very wide range in the observed
deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk
beyond the Local Bubble. We argue that spatial variations in the depletion of
deuterium onto dust grains can explain these local variations in the observed
gas-phase D/H ratios. We present a variable deuterium depletion model that
naturally explains the constant measured values of D/H inside the Local Bubble,
the wide range of gas-phase D/H ratios observed in the intermediate regime (log
N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger
hydrogen column densities. We consider empirical tests of the deuterium
depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions
of the refractory metals iron and silicon, and (ii) correlation with the
molecular hydrogen rotational temperature. Both of these tests are consistent
with deuterium depletion from the gas phase in cold, not recently shocked,
regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked
or otherwise heated recently. We argue that the most representative value for
the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4
(1 sigma) parts per million (ppm). This ratio constrains Galactic chemical
evolution models to have a very small deuterium astration factor, the ratio of
primordial to total (D/H) ratio in the local region of the Galactic disk, which
we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma)
depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure
- …
