241 research outputs found
On the Computation of Clebsch-Gordan Coefficients and the Dilation Effect
We investigate the problem of computing tensor product multiplicities for
complex semisimple Lie algebras. Even though computing these numbers is #P-hard
in general, we show that if the rank of the Lie algebra is assumed fixed, then
there is a polynomial time algorithm, based on counting the lattice points in
polytopes. In fact, for Lie algebras of type A_r, there is an algorithm, based
on the ellipsoid algorithm, to decide when the coefficients are nonzero in
polynomial time for arbitrary rank. Our experiments show that the lattice point
algorithm is superior in practice to the standard techniques for computing
multiplicities when the weights have large entries but small rank. Using an
implementation of this algorithm, we provide experimental evidence for
conjectured generalizations of the saturation property of
Littlewood--Richardson coefficients. One of these conjectures seems to be valid
for types B_n, C_n, and D_n.Comment: 21 pages, 6 table
Vertices of Gelfand-Tsetlin Polytopes
This paper is a study of the polyhedral geometry of Gelfand-Tsetlin patterns
arising in the representation theory \mathfrak{gl}_n \C and algebraic
combinatorics. We present a combinatorial characterization of the vertices and
a method to calculate the dimension of the lowest-dimensional face containing a
given Gelfand-Tsetlin pattern.
As an application, we disprove a conjecture of Berenstein and Kirillov about
the integrality of all vertices of the Gelfand-Tsetlin polytopes. We can
construct for each a counterexample, with arbitrarily increasing
denominators as grows, of a non-integral vertex. This is the first infinite
family of non-integral polyhedra for which the Ehrhart counting function is
still a polynomial. We also derive a bound on the denominators for the
non-integral vertices when is fixed.Comment: 14 pages, 3 figures, fixed attribution
Different types of integrability and their relation to decoherence in central spin models
We investigate the relation between integrability and decoherence in central
spin models with more than one central spin. We show that there is a transition
between integrability ensured by the Bethe ansatz and integrability ensured by
complete sets of commuting operators. This has a significant impact on the
decoherence properties of the system, suggesting that it is not necessarily
integrability or nonintegrability which is related to decoherence, but rather
its type or a change from integrability to nonintegrability.Comment: 4 pages, 3 figure
Equivalence of domains for hyperbolic Hubbard-Stratonovich transformations
We settle a long standing issue concerning the traditional derivation of
non-compact non-linear sigma models in the theory of disordered electron
systems: the hyperbolic Hubbard-Stratonovich (HS) transformation of
Pruisken-Schaefer type. Only recently the validity of such transformations was
proved in the case of U(p,q) (non-compact unitary) and O(p,q) (non-compact
orthogonal) symmetry. In this article we give a proof for general non-compact
symmetry groups. Moreover we show that the Pruisken-Schaefer type
transformations are related to other variants of the HS transformation by
deformation of the domain of integration. In particular we clarify the origin
of surprising sign factors which were recently discovered in the case of
orthogonal symmetry.Comment: 30 pages, 3 figure
A Generating Function for all Semi-Magic Squares and the Volume of the Birkhoff Polytope
We present a multivariate generating function for all n x n nonnegative
integral matrices with all row and column sums equal to a positive integer t,
the so called semi-magic squares. As a consequence we obtain formulas for all
coefficients of the Ehrhart polynomial of the polytope B_n of n x n
doubly-stochastic matrices, also known as the Birkhoff polytope. In particular
we derive formulas for the volumes of B_n and any of its faces.Comment: 24 pages, 1 figure. To appear in Journal of Algebraic Combinatoric
Coded Parity Packet Transmission Method for Two Group Resource Allocation
Gap value control is investigated when the number of source and parity packets
is adjusted in a concatenated coding scheme whilst keeping the overall coding
rate fixed. Packet-based outer codes which are generated from bit-wise XOR
combinations of the source packets are used to adjust the number of both source
packets. Having the source packets, the number of parity packets, which are the
bit-wise XOR combinations of the source packets can be adjusted such that the
gap value, which measures the gap between the theoretical and the required
signal-to-noise ratio (SNR), is controlled without changing the actual coding
rate. Consequently, the required SNR reduces, yielding a lower required energy
to realize the transmission data rate. Integrating this coding technique with
a two-group resource allocation scheme renders efficient utilization of the total
energy to further improve the data rates. With a relatively small-sized set of
discrete data rates, the system throughput achieved by the proposed two-group
loading scheme is observed to be approximately equal to that of the existing
loading scheme, which is operated with a much larger set of discrete data rates.
The gain obtained by the proposed scheme over the existing equal rate and
equal energy loading scheme is approximately 5 dB. Furthermore, a successive
interference cancellation scheme is also integrated with this coding technique,
which can be used to decode and provide consecutive symbols for inter-symbol
interference (ISI) and multiple access interference (MAI) mitigation. With this
integrated scheme, the computational complexity is signi cantly reduced by
eliminating matrix inversions. In the same manner, the proposed coding scheme
is also incorporated into a novel fixed energy loading, which distributes packets
over parallel channels, to control the gap value of the data rates although the
SNR of each code channel varies from each other
Prodsimplicial-Neighborly Polytopes
Simultaneously generalizing both neighborly and neighborly cubical polytopes,
we introduce PSN polytopes: their k-skeleton is combinatorially equivalent to
that of a product of r simplices. We construct PSN polytopes by three different
methods, the most versatile of which is an extension of Sanyal and Ziegler's
"projecting deformed products" construction to products of arbitrary simple
polytopes. For general r and k, the lowest dimension we achieve is 2k+r+1.
Using topological obstructions similar to those introduced by Sanyal to bound
the number of vertices of Minkowski sums, we show that this dimension is
minimal if we additionally require that the PSN polytope is obtained as a
projection of a polytope that is combinatorially equivalent to the product of r
simplices, when the dimensions of these simplices are all large compared to k.Comment: 28 pages, 9 figures; minor correction
On a Linear Program for Minimum-Weight Triangulation
Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time
constant-factor approximation algorithm, and a variety of effective polynomial-
time heuristics that, for many instances, can find the exact MWT. Linear
programs (LPs) for MWT are well-studied, but previously no connection was known
between any LP and any approximation algorithm or heuristic for MWT. Here we
show the first such connections: for an LP formulation due to Dantzig et al.
(1985): (i) the integrality gap is bounded by a constant; (ii) given any
instance, if the aforementioned heuristics find the MWT, then so does the LP.Comment: To appear in SICOMP. Extended abstract appeared in SODA 201
Parametric Polyhedra with at least Lattice Points: Their Semigroup Structure and the k-Frobenius Problem
Given an integral matrix , the well-studied affine semigroup
\mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be
stratified by the number of lattice points inside the parametric polyhedra
. Such families of parametric polyhedra appear in
many areas of combinatorics, convex geometry, algebra and number theory. The
key themes of this paper are: (1) A structure theory that characterizes
precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{
Sg}(A) such that has at least solutions. We
demonstrate that this set is finitely generated, it is a union of translated
copies of a semigroup which can be computed explicitly via Hilbert bases
computations. Related results can be derived for those right-hand-side vectors
for which has exactly solutions or fewer
than solutions. (2) A computational complexity theory. We show that, when
, are fixed natural numbers, one can compute in polynomial time an
encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function,
using a short sum of rational functions. As a consequence, one can identify all
right-hand-side vectors of bounded norm that have at least solutions. (3)
Applications and computation for the -Frobenius numbers. Using Generating
functions we prove that for fixed the -Frobenius number can be
computed in polynomial time. This generalizes a well-known result for by
R. Kannan. Using some adaptation of dynamic programming we show some practical
computations of -Frobenius numbers and their relatives
Nonlinear Integer Programming
Research efforts of the past fifty years have led to a development of linear
integer programming as a mature discipline of mathematical optimization. Such a
level of maturity has not been reached when one considers nonlinear systems
subject to integrality requirements for the variables. This chapter is
dedicated to this topic.
The primary goal is a study of a simple version of general nonlinear integer
problems, where all constraints are still linear. Our focus is on the
computational complexity of the problem, which varies significantly with the
type of nonlinear objective function in combination with the underlying
combinatorial structure. Numerous boundary cases of complexity emerge, which
sometimes surprisingly lead even to polynomial time algorithms.
We also cover recent successful approaches for more general classes of
problems. Though no positive theoretical efficiency results are available, nor
are they likely to ever be available, these seem to be the currently most
successful and interesting approaches for solving practical problems.
It is our belief that the study of algorithms motivated by theoretical
considerations and those motivated by our desire to solve practical instances
should and do inform one another. So it is with this viewpoint that we present
the subject, and it is in this direction that we hope to spark further
research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G.
Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50
Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art
Surveys, Springer-Verlag, 2009, ISBN 354068274
- …
