911 research outputs found
Anomalously large capacitance of an ionic liquid described by the restricted primitive model
We use Monte Carlo simulations to examine the simplest model of an ionic
liquid, called the restricted primitive model, at a metal surface. We find that
at moderately low temperatures the capacitance of the metal/ionic liquid
interface is so large that the effective thickness of the electrostatic
double-layer is up to 3 times smaller than the ion radius. To interpret these
results we suggest an approach which is based on the interaction between
discrete ions and their image charges in the metal surface and which therefore
goes beyond the mean-field approximation. When a voltage is applied across the
interface, the strong image attraction causes counterions to condense onto the
metal surface to form compact ion-image dipoles. These dipoles repel each other
to form a correlated liquid. When the surface density of these dipoles is low,
the insertion of an additional dipole does not require much energy. This leads
to a large capacitance that decreases monotonically with voltage ,
producing a "bell-shaped" curve . We also consider what happens when the
electrode is made from a semi-metal rather than a perfect metal. In this case,
the finite screening radius of the electrode shifts the reflection plane for
image charges to the interior of the electrode and we arrive at a
"camel-shaped" . These predictions seem to be in qualitative agreement
with experiment.Comment: 7 pages, 5 figures; some numerical comparisons added; schematic
figure added, additional discussion of effect of electrode material, section
added with comparison to semiconductor devices; plotting error fixed in Fig.
Ionic conductivity on a wetting surface
Recent experiments measuring the electrical conductivity of DNA molecules
highlight the need for a theoretical model of ion transport along a charged
surface. Here we present a simple theory based on the idea of unbinding of ion
pairs. The strong humidity dependence of conductivity is explained by the
decrease in the electrostatic self-energy of a separated pair when a layer of
water (with high dielectric constant) is adsorbed to the surface. We compare
our prediction for conductivity to experiment, and discuss the limits of its
applicability.Comment: 5 pages, 3 figures; one section and two illustrations added; figures
updated and discussion added; typo fixe
Non-mean-field theory of anomalously large double-layer capacitance
Mean-field theories claim that the capacitance of the double-layer formed at
a metal/ionic conductor interface cannot be larger than that of the Helmholtz
capacitor, whose width is equal to the radius of an ion. However, in some
experiments the apparent width of the double-layer capacitor is substantially
smaller. We propose an alternate, non-mean-field theory of the ionic
double-layer to explain such large capacitance values. Our theory allows for
the binding of discrete ions to their image charges in the metal, which results
in the formation of interface dipoles. We focus primarily on the case where
only small cations are mobile and other ions form an oppositely-charged
background. In this case, at small temperature and zero applied voltage dipoles
form a correlated liquid on both contacts. We show that at small voltages the
capacitance of the double-layer is determined by the transfer of dipoles from
one electrode to the other and is therefore limited only by the weak
dipole-dipole repulsion between bound ions, so that the capacitance is very
large. At large voltages the depletion of bound ions from one of the capacitor
electrodes triggers a collapse of the capacitance to the much smaller
mean-field value, as seen in experimental data. We test our analytical
predictions with a Monte Carlo simulation and find good agreement. We further
argue that our ``one-component plasma" model should work well for strongly
asymmetric ion liquids. We believe that this work also suggests an improved
theory of pseudo-capacitance.Comment: 19 pages, 14 figures; some Monte Carlo results and a section about
aqueous solutions adde
Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors
Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electron spin relaxation in these materials
: a complete model for the chain sub-system
A second neighbor model for the chain subsystem of the
has been extracted from ab-initio calculations. This
model does not use periodic approximation but describes the entire chain
through the use of the four-dimensional crystallographic description. Second
neighbors interactions are found to be of same order than the first neighbors
ones. The computed values of the second neighbors magnetic interaction are
coherent with experimental estimations of the intra-dimer magnetic
interactions, even if slightly smaller. The reasons of this underestimation are
detailed. The computed model allowed us to understand the origin of the chain
dimerisation and predicts correctly the relative occurrence of dimers and free
spins. The orbitals respectively supporting the magnetic electrons and the
holes have been found to be essentially supported by the copper 3d orbitals
(spins) and the surrounding oxygen orbitals (holes), thus giving a strong
footing to the existence of Zhang-Rice singlets
Spintronic magnetic anisotropy
An attractive feature of magnetic adatoms and molecules for nanoscale
applications is their superparamagnetism, the preferred alignment of their spin
along an easy axis preventing undesired spin reversal. The underlying magnetic
anisotropy barrier --a quadrupolar energy splitting-- is internally generated
by spin-orbit interaction and can nowadays be probed by electronic transport.
Here we predict that in a much broader class of quantum-dot systems with spin
larger than one-half, superparamagnetism may arise without spin-orbit
interaction: by attaching ferromagnets a spintronic exchange field of
quadrupolar nature is generated locally. It can be observed in conductance
measurements and surprisingly leads to enhanced spin filtering even in a state
with zero average spin. Analogously to the spintronic dipolar exchange field,
responsible for a local spin torque, the effect is susceptible to electric
control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio
Modelling the Snow Cover for Climate Studies. Part I: Long-term integrations under different climatic conditions using a multi-layered snow-cover model - Part II: The sensitivity to internal snow parameters and interface processes
Computer simulation of syringomyelia in dogs
Syringomyelia is a pathological condition in which fluid-filled cavities (syringes) form and expand in the spinal cord. Syringomyelia is often linked with obstruction of the craniocervical junction and a Chiari malformation, which is similar in both humans and animals. Some brachycephalic toy breed dogs such as Cavalier King Charles Spaniels (CKCS) are particularly predisposed. The exact mechanism of the formation of syringomyelia is undetermined and consequently with the lack of clinical explanation, engineers and mathematicians have resorted to computer models to identify possible physical mechanisms that can lead to syringes. We developed a computer model of the spinal cavity of a CKCS suffering from a large syrinx. The model was excited at the cranial end to simulate the movement of the cerebrospinal fluid (CSF) and the spinal cord due to the shift of blood volume in the cranium related to the cardiac cycle. To simulate the normal condition, the movement was prescribed to the CSF. To simulate the pathological condition, the movement of CSF was blocked
Quantum flutter of supersonic particles in one-dimensional quantum liquids
The non-equilibrium dynamics of strongly correlated many-body systems
exhibits some of the most puzzling phenomena and challenging problems in
condensed matter physics. Here we report on essentially exact results on the
time evolution of an impurity injected at a finite velocity into a
one-dimensional quantum liquid. We provide the first quantitative study of the
formation of the correlation hole around a particle in a strongly coupled
many-body quantum system, and find that the resulting correlated state does not
come to a complete stop but reaches a steady state which propagates at a finite
velocity. We also uncover a novel physical phenomenon when the impurity is
injected at supersonic velocities: the correlation hole undergoes long-lived
coherent oscillations around the impurity, an effect we call quantum flutter.
We provide a detailed understanding and an intuitive physical picture of these
intriguing discoveries, and propose an experimental setup where this physics
can be realized and probed directly.Comment: 13 pages, 9 figure
- …
