4,790 research outputs found
Contact of Single Asperities with Varying Adhesion: Comparing Continuum Mechanics to Atomistic Simulations
Atomistic simulations are used to test the equations of continuum contact
mechanics in nanometer scale contacts. Nominally spherical tips, made by
bending crystals or cutting crystalline or amorphous solids, are pressed into a
flat, elastic substrate. The normal displacement, contact radius, stress
distribution, friction and lateral stiffness are examined as a function of load
and adhesion. The atomic scale roughness present on any tip made of discrete
atoms is shown to have profound effects on the results. Contact areas, local
stresses, and the work of adhesion change by factors of two to four, and the
friction and lateral stiffness vary by orders of magnitude. The microscopic
factors responsible for these changes are discussed. The results are also used
to test methods for analyzing experimental data with continuum theory to
determine information, such as contact area, that can not be measured directly
in nanometer scale contacts. Even when the data appear to be fit by continuum
theory, extracted quantities can differ substantially from their true values
Broadband stimulated four-wave parametric conversion on a tantalum pentoxide photonic chip
We exploit the large third order nonlinear susceptibility (?(3) or “Chi 3”) of tantalum pentoxide (Ta2O5) planar waveguides and realize broadband optical parametric conversion on-chip. We use a co-linear pump-probe configuration and observe stimulated four wave parametric conversion when seeding either in the visible or the infrared. Pumping at 800 nm we observe parametric conversion over a broad spectral range with the parametric idler output spanning from 1200 nm to 1600 nm in infrared wavelengths and from 555 nm to 600 nm in visible wavelengths. Our demonstration of on-chip stimulated four wave parametric conversion introduces Ta2O5 as a novel material for broadband integrated nonlinear photonic circuit applications
Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas
The Faraday effect, caused by a magnetic-field-induced change in the optical
properties, takes place in a vast variety of systems from a single atomic layer
of graphenes to huge galaxies. Currently, it plays a pivot role in many
applications such as the manipulation of light and the probing of magnetic
fields and material's properties. Basically, this effect causes a polarization
rotation of light during its propagation along the magnetic field in a medium.
Here, we report an extreme case of the Faraday effect where a linearly
polarized ultrashort laser pulse splits in time into two circularly polarized
pulses of opposite handedness during its propagation in a highly magnetized
plasma. This offers a new degree of freedom for manipulating ultrashort and
ultrahigh power laser pulses. Together with technologies of ultra-strong
magnetic fields, it may pave the way for novel optical devices, such as
magnetized plasma polarizers. In addition, it may offer a powerful means to
measure strong magnetic fields in laser-produced plasmas.Comment: 18 pages, 5 figure
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
A new approach to the derivation of dynamic information from ionosonde measurements
International audienceA new approach is developed to derive dynamic information near the peak of the ionospheric F-layer from ionosonde measurements. This approach avoids deducing equivalent winds from the displacement of the observed peak height from a no-wind equilibrium height, so it need not determine the no-wind equilibrium height which may limit the accuracy of the deduced winds, as did the traditional servo theory. This approach is preliminarily validated with comparisons of deduced equivalent winds with the measurements from the Fabry-Perot interferometer, the Millstone Hill incoherent scatter radar and with previous works. Examples of vertical components of equivalent winds (VEWs), over Wuhan (114.4° E, 30.6° N, 45.2° dip), China in December 2000 are derived from Wuhan DGS-256 Digisonde data. The deduced VEWs show large day-to-day variations during the winter, even in low magnetic activity conditions. The diurnal pattern of average VEWs is more complicated than that predicted by the empirical Horizontal Wind Model (HWM). Using an empirical electric field model based on the observations from Jicamarca radar and satellites, we investigate the contributions to VEWs from neutral winds and from electric fields at the F-layer peak. If the electric field model is reasonable for Wuhan during this period, the neutral winds contribute mostly to the VEWs, and the contribution from the E × B drifts is insignificant
Nonlocal Phases of Local Quantum Mechanical Wavefunctions in Static and Time-Dependent Aharonov-Bohm Experiments
We show that the standard Dirac phase factor is not the only solution of the
gauge transformation equations. The full form of a general gauge function (that
connects systems that move in different sets of scalar and vector potentials),
apart from Dirac phases also contains terms of classical fields that act
nonlocally (in spacetime) on the local solutions of the time-dependent
Schr\"odinger equation: the phases of wavefunctions in the Schr\"odinger
picture are affected nonlocally by spatially and temporally remote magnetic and
electric fields, in ways that are fully explored. These contributions go beyond
the usual Aharonov-Bohm effects (magnetic or electric). (i) Application to
cases of particles passing through static magnetic or electric fields leads to
cancellations of Aharonov-Bohm phases at the observation point; these are
linked to behaviors at the semiclassical level (to the old Werner & Brill
experimental observations, or their "electric analogs" - or to recent reports
of Batelaan & Tonomura) but are shown to be far more general (true not only for
narrow wavepackets but also for completely delocalized quantum states). By
using these cancellations, certain previously unnoticed sign-errors in the
literature are corrected. (ii) Application to time-dependent situations
provides a remedy for erroneous results in the literature (on improper uses of
Dirac phase factors) and leads to phases that contain an Aharonov-Bohm part and
a field-nonlocal part: their competition is shown to recover Relativistic
Causality in earlier "paradoxes" (such as the van Kampen thought-experiment),
while a more general consideration indicates that the temporal nonlocalities
found here demonstrate in part a causal propagation of phases of quantum
mechanical wavefunctions in the Schr\"odinger picture. This may open a direct
way to address time-dependent double-slit experiments and the associated causal
issuesComment: 49 pages, 1 figure, presented in Conferences "50 years of the
Aharonov-Bohm effect and 25 years of the Berry's phase" (Tel Aviv and
Bristol), published in Journ. Phys. A. Compared to the published paper, this
version has 17 additional lines after eqn.(14) for maximum clarity, and the
Abstract has been slightly modified and reduced from the published 2035
characters to the required 1920 character
Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase
Magnetic and magnetoelastic properties of terbium titanate pyrochlore in
paramagnetic phase are simulated. The magnetic field and temperature
dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single
crystals and polycrystalline samples are calculated in the framework of
exchange charge model of crystal field theory and a mean field approximation.
The set of electron-deformation coupling constants has been determined.
Variations of elastic constants with temperature and applied magnetic field are
discussed. Additional strong softening of the crystal lattice at liquid helium
temperatures in the magnetic field directed along the rhombic symmetry axis is
predicted.Comment: 13 pages, 4 figures, 2 table
Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy
Tissue mass-normalized values of cytochrome C reduced in vitro by succinate dehydrogenase from homogenized TAs of VEH- or RAPA-treated LC and KO mice. Two-way ANOVA. (PDF 291 kb
On the statistical interpretation of optical rogue waves
Numerical simulations are used to discuss various aspects of "optical rogue
wave" statistics observed in noise-driven fiber supercontinuum generation
associated with highly incoherent spectra. In particular, we consider how long
wavelength spectral filtering influences the characteristics of the statistical
distribution of peak power, and we contrast the statistics of the spectrally
filtered SC with the statistics of both the peak power of the most red-shifted
soliton in the SC and the maximum peak power across the full temporal field
with no spectral selection. For the latter case, we show that the unfiltered
statistical distribution can still exhibit a long-tail, but the extreme-events
in this case correspond to collisions between solitons of different
frequencies. These results confirm the importance of collision dynamics in
supercontinuum generation. We also show that the collision-induced events
satisfy an extended hydrodynamic definition of "rogue wave" characteristics.Comment: Paper accepted for publication in the European Physical Journal ST,
Special Topics. Discussion and Debate: Rogue Waves - towards a unifying
concept? To appear 201
- …
