81 research outputs found

    Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3–5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6–8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement n°646625), the Biotechnology and Biological Sciences Research Council of the UK (BB/G023352/1), and Bayer Crop Science

    Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2, 3, 4, 5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.his study received funding from Bayer AG. C.B. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 646625 ). C.B. and K.B. received funding from Biotechnology and Biological Sciences Research Council (BBSRC, award number 15076182 ). The work at Rothamsted forms part of the Smart Crop Protection (SCP) strategic programme ( BBS/OS/CP/000001 ) funded through the Biotechnology and Biological Sciences Research Council’s Industrial Strategy Challenge Fund

    A toxicogenomics approach reveals characteristics supporting the honey bee (Apis mellifera L.) safety profile of the butenolide insecticide flupyradifurone

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordFlupyradifurone, a novel butenolide insecticide, selectively targets insect nicotinic acetylcholine receptors (nAChRs), comparable to structurally different insecticidal chemotypes such as neonicotinoids and sulfoximines. However, flupyradifurone was shown in acute toxicity tests to be several orders of magnitude less toxic to western honey bee (Apis mellifera L.) than many other insecticides targeting insect nAChRs. The underlying reasons for this difference in toxicity remains unknown and were investigated here. Pharmacokinetic studies after contact application of [14C]flupyradifurone to honey bees revealed slow uptake, with internalized compound degraded into a few metabolites that are all practically non-toxic to honey bees in both oral and contact bioassays. Furthermore, receptor binding studies revealed a lack of high-affinity binding of these metabolites to honey bee nAChRs. Screening of a library of 27 heterologously expressed honey bee cytochrome P450 enzymes (P450s) identified three P450s involved in the detoxification of flupyradifurone: CYP6AQ1, CYP9Q2 and CYP9Q3. Transgenic Drosophila lines ectopically expressing CYP9Q2 and CYP9Q3 were significantly less susceptible to flupyradifurone when compared to control flies, confirming the importance of these P450s for flupyradifurone metabolism in honey bees. Biochemical assays using the fluorescent probe substrate 7-benzyloxymethoxy-4-(trifluoromethyl)-coumarin (BOMFC) indicated a weak, non-competitive inhibition of BOMFC metabolism by flupyradifurone. In contrast, the azole fungicides prochloraz and propiconazole were strong nanomolar inhibitors of these flupyradifurone metabolizing P450s, explaining their highly synergistic effects in combination with flupyradifurone as demonstrated in acute laboratory contact toxicity tests of adult bees. Interestingly, the azole fungicide prothioconazole is only slightly synergistic in combination with flupyradifurone - an observation supported by molecular P450 inhibition assays. Such molecular assays have value in the prediction of potential risks posed to bees by flupyradifurone mixture partners under applied conditions. Quantitative PCR confirmed the expression of the identified P450 genes in all honey bee life-stages, with highest expression levels observed in late larvae and adults, suggesting honey bees have the capacity to metabolize flupyradifurone across all life-stages. These findings provide a biochemical explanation for the low intrinsic toxicity of flupyradifurone to honey bees and offer a new, more holistic approach to support bee pollinator risk assessment by molecular means

    Gathering advance customer information: enhancing customers' partnerships

    No full text

    Effects of avatar race in violent video games on racial attitudes and aggression

    No full text
    The media often link Black characters and violence. This is especially true in video games, in which Black male characters are virtually always violent. This research tested the effects of playing a violent game as a Black (vs. White) avatar on racial stereotypes and aggression. In Experiment 1, White participants (N = 126) who played a violent video game as a Black avatar displayed stronger implicit and explicit negative attitudes toward Blacks than did participants who played a violent video game as a White avatar or a nonviolent game as a Black or White avatar. In Experiment 2, White participants (N = 141) who played a violent video game as a Black (vs. White) avatar displayed stronger implicit attitudes linking Blacks to weapons. Implicit attitudes, in turn, related to subsequent aggression. Black violent video game avatars not only make players more aggressive than do White avatars, they also reinforce stereotypes that Blacks are violent. © The Author(s) 2014

    New Concepts of Intelligence

    No full text
    corecore