4,418 research outputs found
Physiology-Aware Rural Ambulance Routing
In emergency patient transport from rural medical facility to center tertiary
hospital, real-time monitoring of the patient in the ambulance by a physician
expert at the tertiary center is crucial. While telemetry healthcare services
using mobile networks may enable remote real-time monitoring of transported
patients, physiologic measures and tracking are at least as important and
requires the existence of high-fidelity communication coverage. However, the
wireless networks along the roads especially in rural areas can range from 4G
to low-speed 2G, some parts with communication breakage. From a patient care
perspective, transport during critical illness can make route selection patient
state dependent. Prompt decisions with the relative advantage of a longer more
secure bandwidth route versus a shorter, more rapid transport route but with
less secure bandwidth must be made. The trade-off between route selection and
the quality of wireless communication is an important optimization problem
which unfortunately has remained unaddressed by prior work.
In this paper, we propose a novel physiology-aware route scheduling approach
for emergency ambulance transport of rural patients with acute, high risk
diseases in need of continuous remote monitoring. We mathematically model the
problem into an NP-hard graph theory problem, and approximate a solution based
on a trade-off between communication coverage and shortest path. We profile
communication along two major routes in a large rural hospital settings in
Illinois, and use the traces to manifest the concept. Further, we design our
algorithms and run preliminary experiments for scalability analysis. We believe
that our scheduling techniques can become a compelling aid that enables an
always-connected remote monitoring system in emergency patient transfer
scenarios aimed to prevent morbidity and mortality with early diagnosis
treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare
Informatics (ICHI 2017), Park City, Utah, 201
Simultaneous structural and control optimization via linear quadratic regulator eigenstructure assignment
A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented
Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem
A homotopy method to compute the eigenpairs, i.e., the eigenvectors and eigenvalues, of a given real matrix A1 is presented. From the eigenpairs of some real matrix A0, the eigenpairs of
A(t) ≡ (1 − t)A0 + tA1
are followed at successive "times" from t = 0 to t = 1 using continuation. At t = 1, the eigenpairs of the desired matrix A1 are found. The following phenomena are present when following the eigenpairs of a general nonsymmetric matrix:
• bifurcation,
• ill conditioning due to nonorthogonal eigenvectors,
• jumping of eigenpaths.
These can present considerable computational difficulties. Since each eigenpair can be followed independently, this algorithm is ideal for concurrent computers. The homotopy method has the potential to compete with other algorithms for computing a few eigenvalues of large, sparse matrices. It may be a useful tool for determining the stability of a solution of a PDE. Some numerical results will be presented
Nanoarrays for the generation of complex optical wave-forms
Light beams with unusual forms of wavefront offer a host of useful features to extend the repertoire of those developing new optical techniques. Complex, non-uniform wavefront structures offer a wide range of optomechanical applications, from microparticle rotation, traction and sorting, through to contactless microfluidic motors. Beams combining transverse nodal structures with orbital angular momentum, or vector beams with novel polarization profiles, also present new opportunities for imaging and the optical transmission of information, including quantum entanglement effects. Whilst there are numerous well-proven methods for generating light with complex wave-forms, most current methods work on the basis of modifying a conventional Hermite-Gaussian beam, by passage through suitably tailored optical elements. It has generally been considered impossible to directly generate wave-front structured beams either by spontaneous or stimulated emission from individual atoms, ions or molecules. However, newly emerged principles have shown that emitter arrays, cast in an appropriately specified geometry, can overcome the obstacles: one possibility is a construct based on the electronic excitation of nanofabricated circular arrays. Recent experimental work has extended this concept to a phase-imprinted ring of apertures holographically encoded in a diffractive mask, generated by a programmed spatial light modulator. These latest advances are potentially paving the way for creating new sources of structured light
Chinese scholars and communication with the West: A research study among scholars in Hong Kong, a cooperative undertaking by JULAC and ProQuest
Other Versio
A new ILP-based p-cycle construction algorithm without candidate cycle enumeration
The notion of p-cycle (Preconfigured Protection Cycle) allows capacity efficient schemes to be designed for fast span protection in WDM mesh networks. Conventional p-cycle construction algorithms need to enumerate/pre-select candidate cycles before ILP (Integer Linear Program) can be applied. In this paper, we propose a new algorithm which is only based on ILP. When the required number of p-cycles is not too large, our ILP can generate optimal/suboptimal solutions in reasonable amount of running time. © 2007 IEEE.published_or_final_versio
Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors
The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing
Cambios en el uso de la tierra y recursos hídricos: mapas conceptuales para la gestión territorial.
Turning mobile phones into a mobile quiz platform to challenge players' knowledge: An experience report
In the past few years, many new mobile technologies including the 3G, WiFi or mobileTV have created unprecedented learning opportunities on mobile devices. Furthermore, such technologies continuously fuel the rapid growth of new fields of research like the edutainment for educational entertainment. In a recent project awarded by the Hong Kong Wireless Development Center, we have developed a mobile quiz game system on 3G mobile phone networks in China, Hong Kong or other countries to facilitate learning anytime and anywhere. Our developed mobile quiz system is so generic that it can be readily extended to any wireless network. In this paper, we discuss about the design and possible uses of our quiz system in mobile learning, and also share the relevant experience in system development with the evaluation strategies carefully examined. After all, our work shed light on many interesting directions for future exploration. © 2008 IEEE.published_or_final_versionThe 8th IEEE International Conference on Advanced Learning Technologies (ICALT 2008), Santander, Cantabria, Spain, 1-5 July 2008. In Proceedings of the 8th ICALT, 2008, p. 943-94
- …
