194 research outputs found
Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice
Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance
Investigation of a new promising process for the RDX synthesis via 1,3,5‐triacetyl‐1,3,5‐triazinane (TRAT)
Despite intensive research for possible replacements, RDX (1,3,5-trinitro-1,3,5-triazinane) is still considered to be one of the most important energetic materials because of its versatile application. Due to the high demand for RDX, optimization of synthesis and development of new methods are of great interest to both academia and industry. Therefore, in this work, the synthesis of RDX via the intermediate TRAT (1,3,5-triacetycl-1,3,5-triazinane) was investigated as a possible alternative industrial production method. In addition to the synthesis of TRAT starting from 1,3,5 trioxane, various feasible nitration methods from TRAT to RDX were investigated. Moreover, the suitability for large-scale production, the comparison of already established methods and the feasibility of a new flow process were discussed
A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence.
BACKGROUND: The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur.
RESULTS: Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater.
CONCLUSIONS: We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential
Melanin Pigmentation and Inflammation in Human Gingiva
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141745/1/jper0701.pd
Ongoing Evolution of Middle East Respiratory Syndrome Coronavirus, Saudi Arabia, 2023–2024
Middle East respiratory syndrome coronavirus (MERS-CoV) circulates in dromedary camels in the Arabian Peninsula and occasionally causes spillover infections in humans. MERS-CoV diversity is poorly understood because of the lack of sampling during the COVID-19 pandemic. We collected 558 swab samples from dromedary camels in Saudi Arabia during November 2023–January 2024. We found 39% were positive for MERS-CoV RNA by reverse transcription PCR. We sequenced 42 MERS-CoVs and 7 human 229E-related coronaviruses from camel swab samples by using high-throughput sequencing. Sequences from both viruses formed monophyletic clades apical to recently available genomes. MERS-CoV sequences were most similar to B5 lineage sequences and harbored unique genetic features, including novel amino acid polymorphisms in the spike protein. Further characterization will be required to understand their effects. MERS-CoV spillover into humans poses considerable public health concerns. Our findings indicate surveillance and phenotypic studies are needed to identify and monitor MERS-CoV pandemic potential
Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′ Untranslated Region
Translation termination at premature termination codons (PTCs) triggers degradation of the aberrant mRNA, but the mechanism by which a termination event is defined as premature is still unclear. Here we show that the physical distance between the termination codon and the poly(A)-binding protein PABPC1 is a crucial determinant for PTC recognition in human cells. “Normal” termination codons can trigger nonsense-mediated mRNA decay (NMD) when this distance is extended; and vice versa, NMD can be suppressed by folding the poly(A) tail into proximity of a PTC or by tethering of PABPC1 nearby a PTC, indicating an evolutionarily conserved function of PABPC1 in promoting correct translation termination and antagonizing activation of NMD. Most importantly, our results demonstrate that spatial rearrangements of the 3′ untranslated region can modulate the NMD pathway and thereby provide a novel mechanism for posttranscriptional gene regulation
Periodontal conditions, oral Candida albicans and salivary proteins in type 2 diabetic subjects with emphasis on gender
<p>Abstract</p> <p>Background</p> <p>The association between periodontal conditions, oral yeast colonisation and salivary proteins in subjects with type 2 diabetes (T2D) is not yet documented. The present study aimed to assess the relationship between these variables in type 2 diabetic subjects with reference to gender.</p> <p>Methods</p> <p>Fifty-eight type 2 diabetic subjects (23 males and 35 females) with random blood glucose level ≥ 11.1 mmol/L were investigated. Periodontal conditions (plaque index [PI], bleeding on probing [BOP], probing pocket depth [PD] (4 to 6 mm and ≥ 6 mm), oral yeasts, salivary immunoglobulin (Ig) A, IgG and total protein concentrations, and number of present teeth were determined.</p> <p>Results</p> <p>Periodontal conditions (PI [<it>p </it>< 0.00001], BOP [<it>p </it>< 0.01] and PD of 4 to 6 mm [<it>p </it>< 0.001], salivary IgG (μg)/mg protein (<it>p </it>< 0.001) and salivary total protein concentrations (<it>p </it>< 0.05) were higher in type 2 diabetic females with <it>Candida albicans </it>(<it>C. albicans</it>) colonisation compared to males in the same group. Type 2 diabetic females with <it>C. albicans </it>colonisation had more teeth compared to males in the same group (<it>p </it>< 0.0001).</p> <p>Conclusion</p> <p>Clinical and salivary parameters of periodontal inflammation (BOP and IgG (μg)/mg protein) were higher in type 2 diabetic females with oral <it>C. albicans </it>colonisation compared to males in the same group. Further studies are warranted to evaluate the association of gender with these variables in subjects with T2D.</p
Periodontal disease and some adverse perinatal outcomes in a cohort of low risk pregnant women
Objective: To evaluate the association of periodontal disease (PD) in pregnancy with some adverse perinatal outcomes. Method: This cohort study included 327 pregnant women divided in groups with or without PD. Indexes of plaque and gingival bleeding on probing, probing pocket depth, clinical attachment level and gingival recession were evaluated at one periodontal examination below 32 weeks of gestation. The rates of preterm birth (PTB), low birth weight (LBW), small for gestational age (SGA) neonates and prelabor rupture of membranes (PROM) were evaluated using Risk Ratios (95%CI) and Population Attributable Risk Fractions. Results: PD was associated with a higher risk of PTB (RRadj. 3.47 95% CI 1.62-7.43), LBW (RRadj. 2.93 95% CI 1.36-6.34) and PROM (RRadj. 2.48 95% CI 1.35-4.56), but not with SGA neonates (RR 2.38 95% CI 0.93 - 6.10). Conclusions: PD was a risk factor for PT, LBW and PROM among Brazilian low risk pregnant women
Effect of fluoride toothpastes on enamel demineralization
BACKGROUND: It was the aim of this study to investigate the effect of four different toothpastes with differing fluoride compounds on enamel remineralization. METHODS: A 3 × 3 mm window on the enamel surface of 90 human premolars was demineralized in a hydroxyethylcellulose solution at pH 4.8. The teeth were divided into 6 groups and the lower half of the window was covered with varnish serving as control. The teeth were immersed in a toothpaste slurry containing: placebo tooth paste (group 1); remineralization solution (group 2); Elmex Anticaries (group 3); Elmex Sensitive (group 4); Blend-a-med Complete (group 5) and Colgate GRF (group 6). Ten teeth of each group were used for the determination of the F(- )content in the superficial enamel layer and acid solubility of enamel expressed in soluble phosphorus. Of 6 teeth of each group serial sections were cut and investigated with polarization light microscopy (PLM) and quantitative energy dispersive X-ray analysis (EDX). RESULTS: The PLM results showed an increased remineralization of the lesion body in the Elmex Anticaries, Elmex Sensitive and Colgate GRF group but not in the Blend-a-med group. A statistically significant higher Ca content was found in the Elmex Anticaries group. The fluoride content in the superficial enamel layer was significantly increased in both Elmex groups and the Blend-a-med group. Phosphorus solubility was significantly decreased in both Elmex groups and the Blend-a-med group. CONCLUSION: It can be concluded that amine fluoride compounds in toothpastes result in a clearly marked remineralization of caries like enamel lesions followed by sodium fluoride and sodium monofluorophosphate formulations
- …
