774 research outputs found
Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas
We show lower bounds of and on the
randomized and quantum communication complexity, respectively, of all
-variable read-once Boolean formulas. Our results complement the recent
lower bound of by Leonardos and Saks and
by Jayram, Kopparty and Raghavendra for
randomized communication complexity of read-once Boolean formulas with depth
. We obtain our result by "embedding" either the Disjointness problem or its
complement in any given read-once Boolean formula.Comment: 5 page
Berry phase for a spin 1/2 in a classical fluctuating field
The effect of fluctuations in the classical control parameters on the Berry
phase of a spin 1/2 interacting with a adiabatically cyclically varying
magnetic field is analyzed. It is explicitly shown that in the adiabatic limit
dephasing is due to fluctuations of the dynamical phase.Comment: 4 pages, 1 figure, published versio
Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities
Quantum theory imposes a strict limit on the strength of non-local
correlations. It only allows for a violation of the CHSH inequality up to the
value 2 sqrt(2), known as Tsirelson's bound. In this note, we consider
generalized CHSH inequalities based on many measurement settings with two
possible measurement outcomes each. We demonstrate how to prove Tsirelson
bounds for any such generalized CHSH inequality using semidefinite programming.
As an example, we show that for any shared entangled state and observables
X_1,...,X_n and Y_1,...,Y_n with eigenvalues +/- 1 we have | + <X_2
Y_1> + + + ... + - | <= 2 n
cos(pi/(2n)). It is well known that there exist observables such that equality
can be achieved. However, we show that these are indeed optimal. Our approach
can easily be generalized to other inequalities for such observables.Comment: 9 pages, LateX, V2: Updated reference [3]. To appear in Physical
Review
Lower bounds in the quantum cell probe model
We introduce a new model for studying quantum data structure problems --- the "quantum cell probe model". We prove a lower bound for the static predecessor problem in the 'address-only' version of this model where, essentially, we allow quantum parallelism only over the 'address lines' of the queries. This model subsumes the classical cell probe model, and many quantum query algorithms like Grover's algorithm fall into this framework. We prove our lower bound by obtaining a round elimination lemma for quantum communication complexity. A similar lemma was proved by Miltersen, Nisan, Safra and Wigderson for classical communication complexity, but their proof does not generalise to the quantum setting. We also study the static membership problem in the quantum cell probe model. Generalising a result of Yao, we show that if the storage scheme is 'implicit', that is it can only store members of the subset and 'pointers', then any quantum query scheme must make \Omega(\log n) probes. We also consider the one-round quantum communication complexity of set membership and show tight bounds
Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites
Low field and high field transport properties of carbon nanotubes/polymer
composites are investigated for different tube fractions. Above the percolation
threshold f_c=0.33%, transport is due to hopping of localized charge carriers
with a localization length xi=10-30 nm. Coulomb interactions associated with a
soft gap Delta_CG=2.5 meV are present at low temperature close to f_c. We argue
that it originates from the Coulomb charging energy effect which is partly
screened by adjacent bundles. The high field conductivity is described within
an electrical heating scheme. All the results suggest that using composites
close to the percolation threshold may be a way to access intrinsic properties
of the nanotubes by experiments at a macroscopic scale.Comment: 4 pages, 5 figures, Submitted to Phys. Rev.
Single-qubit unitary gates by graph scattering
We consider the effects of plane-wave states scattering off finite graphs, as
an approach to implementing single-qubit unitary operations within the
continuous-time quantum walk framework of universal quantum computation. Four
semi-infinite tails are attached at arbitrary points of a given graph,
representing the input and output registers of a single qubit. For a range of
momentum eigenstates, we enumerate all of the graphs with up to vertices
for which the scattering implements a single-qubit gate. As increases, the
number of new unitary operations increases exponentially, and for the
majority correspond to rotations about axes distributed roughly uniformly
across the Bloch sphere. Rotations by both rational and irrational multiples of
are found.Comment: 8 pages, 7 figure
Generalized Bell Inequality Experiments and Computation
We consider general settings of Bell inequality experiments with many
parties, where each party chooses from a finite number of measurement settings
each with a finite number of outcomes. We investigate the constraints that Bell
inequalities place upon the correlations possible in a local hidden variable
theories using a geometrical picture of correlations. We show that local hidden
variable theories can be characterized in terms of limited computational
expressiveness, which allows us to characterize families of Bell inequalities.
The limited computational expressiveness for many settings (each with many
outcomes) generalizes previous results about the many-party situation each with
a choice of two possible measurements (each with two outcomes). Using this
computational picture we present generalizations of the Popescu-Rohrlich
non-local box for many parties and non-binary inputs and outputs at each site.
Finally, we comment on the effect of pre-processing on measurement data in our
generalized setting and show that it becomes problematic outside of the binary
setting, in that it allows local hidden variable theories to simulate maximally
non-local correlations such as those of these generalised Popescu-Rohrlich
non-local boxes.Comment: 16 pages, 2 figures, supplemental material available upon request.
Typos corrected and references adde
Information-theoretic interpretation of quantum error-correcting codes
Quantum error-correcting codes are analyzed from an information-theoretic
perspective centered on quantum conditional and mutual entropies. This approach
parallels the description of classical error correction in Shannon theory,
while clarifying the differences between classical and quantum codes. More
specifically, it is shown how quantum information theory accounts for the fact
that "redundant" information can be distributed over quantum bits even though
this does not violate the quantum "no-cloning" theorem. Such a remarkable
feature, which has no counterpart for classical codes, is related to the
property that the ternary mutual entropy vanishes for a tripartite system in a
pure state. This information-theoretic description of quantum coding is used to
derive the quantum analogue of the Singleton bound on the number of logical
bits that can be preserved by a code of fixed length which can recover a given
number of errors.Comment: 14 pages RevTeX, 8 Postscript figures. Added appendix. To appear in
Phys. Rev.
- …
