2,305 research outputs found
Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors
We study the collective modes in the magnetic-field-induced spin-density-wave
(FISDW) phases experimentally observed in organic conductors of the Bechgaard
salts family. In phases that exhibit a sign reversal of the quantum Hall effect
(Ribault anomaly), the coexistence of two spin-density waves gives rise to
additional collective modes besides the Goldstone modes due to spontaneous
translation and rotation symmetry breaking. These modes strongly affect the
charge and spin response functions. We discuss some experimental consequences
for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in
Europhys. Let
Position-dependent mass models and their nonlinear characterization
We consider the specific models of Zhu-Kroemer and BenDaniel-Duke in a
sech-mass background and point out interesting correspondences with the
stationary 1-soliton and 2-soliton solutions of the KdV equation in a
supersymmetric framework.Comment: 8 Pages, Latex version, Two new references are added, To appear in
J.Phys.A (Fast Track Communication
Ultra-High Energy Neutrino Fluxes: New Constraints and Implications
We apply new upper limits on neutrino fluxes and the diffuse extragalactic
component of the GeV gamma-ray flux to various scenarios for ultra high energy
cosmic rays and neutrinos. As a result we find that extra-galactic top-down
sources can not contribute significantly to the observed flux of highest energy
cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce
cosmic rays via interactions with relic neutrinos is practically ruled out if
cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
Anderson localization on the Cayley tree : multifractal statistics of the transmission at criticality and off criticality
In contrast to finite dimensions where disordered systems display
multifractal statistics only at criticality, the tree geometry induces
multifractal statistics for disordered systems also off criticality. For the
Anderson tight-binding localization model defined on a tree of branching ratio
K=2 with generations, we consider the Miller-Derrida scattering geometry
[J. Stat. Phys. 75, 357 (1994)], where an incoming wire is attached to the root
of the tree, and where outcoming wires are attached to the leaves of
the tree. In terms of the transmission amplitudes , the total
Landauer transmission is , so that each channel
is characterized by the weight . We numerically measure the
typical multifractal singularity spectrum of these weights as a
function of the disorder strength and we obtain the following conclusions
for its left-termination point . In the delocalized phase ,
is strictly positive and is associated with a
moment index . At criticality, it vanishes and is
associated with the moment index . In the localized phase ,
is associated with some moment index . We discuss the
similarities with the exact results concerning the multifractal properties of
the Directed Polymer on the Cayley tree.Comment: v2=final version (16 pages
On the accuracy of the PFA: analogies between Casimir and electrostatic forces
We present an overview of the validity of the Proximity Force Approximation
(PFA) in the calculation of Casimir forces between perfect conductors for
different geometries, with particular emphasis for the configuration of a
cylinder in front of a plane. In all cases we compare the exact numerical
results with those of PFA, and with asymptotic expansions that include the next
to leading order corrections. We also discuss the similarities and differences
between the results for Casimir and electrostatic forces.Comment: 17 pages, 5 figures, Proceedings of the meeting "60 years of Casimir
effect", Brasilia, 200
Casimir effect due to a single boundary as a manifestation of the Weyl problem
The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases
the divergences can be eliminated by methods such as zeta-function
regularization or through physical arguments (ultraviolet transparency of the
boundary would provide a cutoff). Using the example of a massless scalar field
theory with a single Dirichlet boundary we explore the relationship between
such approaches, with the goal of better understanding the origin of the
divergences. We are guided by the insight due to Dowker and Kennedy (1978) and
Deutsch and Candelas (1979), that the divergences represent measurable effects
that can be interpreted with the aid of the theory of the asymptotic
distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases
the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having
geometrical origin, and an "intrinsic" term that is independent of the cutoff.
The Weyl terms make a measurable contribution to the physical situation even
when regularization methods succeed in isolating the intrinsic part.
Regularization methods fail when the Weyl terms and intrinsic parts of the
Casimir effect cannot be clearly separated. Specifically, we demonstrate that
the Casimir self-energy of a smooth boundary in two dimensions is a sum of two
Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a
geometrical term that is independent of cutoff, and a non-geometrical intrinsic
term. As by-products we resolve the puzzle of the divergent Casimir force on a
ring and correct the sign of the coefficient of linear tension of the Dirichlet
line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references
added, version to be published in J. Phys.
Electroweak jet cascading in the decay of superheavy particles
We study decays of superheavy particles into leptons. We show that they
initiate cascades similar to QCD parton jets, if m_X\gsim 10^6 GeV.
Electroweak cascading is studied and the energy spectra of the produced leptons
are calculated in the framework of a broken SU(2) model of weak interactions.
As application, important for the Z-burst model for ultrahigh energy cosmic
rays, we consider decays of superheavy particles coupled on tree-level only to
neutrinos and derive stringent limit for these decays from the observed diffuse
extragalactic -ray flux.Comment: 4 pages, 1 eps figur
The Boltzmann equation for colourless plasmons in hot QCD plasma. Semiclassical approximation
Within the framework of the semiclassical approximation, we derive the
Boltzmann equation describing the dynamics of colorless plasmons in a hot QCD
plasma. The probability of the plasmon-plasmon scattering at the leading order
in the coupling constant is obtained. This probability is gauge-independent at
least in the class of the covariant and temporal gauges. It is noted that the
structure of the scattering kernel possesses important qualitative difference
from the corresponding one in the Abelian plasma, in spite of the fact that we
focused our study on the colorless soft excitations. It is shown that
four-plasmon decay is suppressed by the power of relative to the process of
nonlinear scattering of plasmons by thermal particles at the soft momentum
scale. It is stated that the former process becomes important in going to the
ultrasoft region of the momentum scale.Comment: 41, LaTeX, minor changes, identical to published versio
On higher dimensional Einstein spacetimes with a warped extra dimension
We study a class of higher dimensional warped Einstein spacetimes with one
extra dimension. These were originally identified by Brinkmann as those
Einstein spacetimes that can be mapped conformally on other Einstein
spacetimes, and have subsequently appeared in various contexts to describe,
e.g., different braneworld models or warped black strings. After clarifying the
relation between the general Brinkmann metric and other more specific
coordinate systems, we analyze the algebraic type of the Weyl tensor of the
solutions. In particular, we describe the relation between Weyl aligned null
directions (WANDs) of the lower dimensional Einstein slices and of the full
spacetime, which in some cases can be algebraically more special. Possible
spacetime singularities introduced by the warp factor are determined via a
study of scalar curvature invariants and of Weyl components measured by
geodetic observers. Finally, we illustrate how Brinkmann's metric can be
employed to generate new solutions by presenting the metric of spinning and
accelerating black strings in five dimensional anti-de Sitter space.Comment: 14 pages, minor changes in the text, mainly in Section 2.
Enhanced electrical resistivity before N\'eel order in the metals, RCuAs (R= Sm, Gd, Tb and Dy
We report an unusual temperature (T) dependent electrical resistivity()
behavior in a class of ternary intermetallic compounds of the type RCuAs
(R= Rare-earths). For some rare-earths (Sm, Gd, Tb and Dy) with negligible
4f-hybridization, there is a pronounced minimum in (T) far above
respective N\'eel temperatures (T). However, for the rare-earths which are
more prone to exhibit such a (T) minimum due to 4f-covalent mixing and
the Kondo effect, this minimum is depressed. These findings, difficult to
explain within the hither-to-known concepts, present an interesting scenario in
magnetism.Comment: Physical Review Letters (accepted for publication
- …
