1,699 research outputs found
Simple Lattice-Models of Ion Conduction: Counter Ion Model vs. Random Energy Model
The role of Coulomb interaction between the mobile particles in ionic
conductors is still under debate. To clarify this aspect we perform Monte Carlo
simulations on two simple lattice models (Counter Ion Model and Random Energy
Model) which contain Coulomb interaction between the positively charged mobile
particles, moving on a static disordered energy landscape. We find that the
nature of static disorder plays an important role if one wishes to explore the
impact of Coulomb interaction on the microscopic dynamics. This Coulomb type
interaction impedes the dynamics in the Random Energy Model, but enhances
dynamics in the Counter Ion Model in the relevant parameter range.Comment: To be published in Phys. Rev.
Influence of external magnetic fields on growth of alloy nanoclusters
Kinetic Monte Carlo simulations are performed to study the influence of
external magnetic fields on the growth of magnetic fcc binary alloy
nanoclusters with perpendicular magnetic anisotropy. The underlying kinetic
model is designed to describe essential structural and magnetic properties of
CoPt_3-type clusters grown on a weakly interacting substrate through molecular
beam epitaxy. The results suggest that perpendicular magnetic anisotropy can be
enhanced when the field is applied during growth. For equilibrium bulk systems
a significant shift of the onset temperature for L1_2 ordering is found, in
agreement with predictions from Landau theory. Stronger field induced effects
can be expected for magnetic fcc-alloys undergoing L1_0 ordering.Comment: 10 pages, 3 figure
Time-Dependent Density Functional Theory for Driven Lattice Gas Systems with Interactions
We present a new method to describe the kinetics of driven lattice gases with
particle-particle interactions beyond hard-core exclusions. The method is based
on the time-dependent density functional theory for lattice systems and allows
one to set up closed evolution equations for mean site occupation numbers in a
systematic manner. Application of the method to a totally asymmetric site
exclusion process with nearest-neighbor interactions yields predictions for the
current-density relation in the bulk, the phase diagram of non-equilibrium
steady states and the time evolution of density profiles that are in good
agreement with results from kinetic Monte Carlo simulations.Comment: 11 pages, 3 figure
A Survey on Continuous Time Computations
We provide an overview of theories of continuous time computation. These
theories allow us to understand both the hardness of questions related to
continuous time dynamical systems and the computational power of continuous
time analog models. We survey the existing models, summarizing results, and
point to relevant references in the literature
Hopping Transport in the Presence of Site Energy Disorder: Temperature and Concentration Scaling of Conductivity Spectra
Recent measurements on ion conducting glasses have revealed that conductivity
spectra for various temperatures and ionic concentrations can be superimposed
onto a common master curve by an appropriate rescaling of the conductivity and
frequency. In order to understand the origin of the observed scaling behavior,
we investigate by Monte Carlo simulations the diffusion of particles in a
lattice with site energy disorder for a wide range of both temperatures and
concentrations. While the model can account for the changes in ionic activation
energies upon changing the concentration, it in general yields conductivity
spectra that exhibit no scaling behavior. However, for typical concentrations
and sufficiently low temperatures, a fairly good data collapse is obtained
analogous to that found in experiment.Comment: 6 pages, 4 figure
Влияние модифицирующих добавок f-элементов на каталитические свойства высококремнеземных цеолитов типа MFI в процессе получения высокооктановых компонентов бензинов
Assessing the dairy value chain and potential to enhance productivity through improved feeding in Pemba Island of Zanzibar, the United Republic of Tanzania
Reconstruction from Radon projections and orthogonal expansion on a ball
The relation between Radon transform and orthogonal expansions of a function
on the unit ball in \RR^d is exploited. A compact formula for the partial
sums of the expansion is given in terms of the Radon transform, which leads to
algorithms for image reconstruction from Radon data. The relation between
orthogonal expansion and the singular value decomposition of the Radon
transform is also exploited.Comment: 15 page
Dynamics of UF[6] Desublimation with the Influence of Tank Geometry for Various Coolant Temperature
Mathematical model of UF[6] desublimation in a vertical immersion tank is presented in the article. Results of calculations of the filling dynamics of the tanks with 1m3 volume at various coolant temperatures, with and without ellipticity of the end walls are given. It is shown that allowance for the ellipticity of the end walls of the tanks leads to a significant increase in the time of desublimation of UF[6]
Channel diffusion of sodium in a silicate glass
We use classical molecular dynamics simulations to study the dynamics of
sodium atoms in amorphous NaO-4SiO. We find that the sodium
trajectories form a well connected network of pockets and channels. Inside
these channels the motion of the atoms is not cooperative but rather given by
independent thermally activated hops of individual atoms between the pockets.
By determining the probability that an atom returns to a given starting site,
we show that such events are not important for the dynamics of this system.Comment: 10 pages of Latex, 5 figures, one figure added, text expande
- …
