353 research outputs found

    Three-centre cluster structure in 11C and 11B

    Full text link
    Studies of the 16O(9Be,alpha 7Be)14C, 7Li(9Be,alpha 7Li)5He and 7Li(9Be,alpha alpha t)5He reactions at E(beam)=70 and 55 MeV have been performed using resonant particle spectroscopy techniques. The 11C excited states decaying into alpha+7Be(gs) are observed between 8.5 and 13.5 MeV. The alpha+7Li(gs), alpha+7Li*(4.652 MeV) and t+8Be(gs) decays of 11B excited states between 9 and 19 MeV are observed. The decay processes are used to indicate the possible three-centre 2alpha+3He (2alpha+3H) cluster structure of observed states. This cluster structure is more prominent in the positive-parity states, where two rotational bands with large deformations are suggested. Excitations of some of the observed T=1/2 resonances coincide with the energies of previously measured T=3/2 isobaric analogs of the 11Be states,indicating that these states may have mixed isospin.Comment: Contribution for the proceedings of the NUSTAR'05: NUclear STructure, Astrophysics and Reactions, University of Surrey, Guildford, UK; accepted for publication in Journal of Physics

    Study of the Fusion-Fission Process in the 35Cl+24Mg^{35}Cl+^{24}Mg Reaction

    Get PDF
    Fusion-fission and fully energy-damped binary processes of the 35^{35}Cl+24^{24}Mg reaction were investigated using particle-particle coincidence techniques at a 35^{35}Cl bombarding energy of Elab_{lab} \approx 8 MeV/nucleon. Inclusive data were also taken in order to determine the partial wave distribution of the fusion process. The fragment-fragment correlation data show that the majority of events arises from a binary-decay process with a relatively large multiplicity of secondary light-charged particles emitted by the two primary excited fragments in the exit channel. No evidence is observed for ternary-breakup processes, as expected from the systematics recently established for incident energies below 15 MeV/nucleon and for a large number of reactions. The binary-process results are compared with predictions of statistical-model calculations. The calculations were performed using the Extended Hauser-Feshbach method, based on the available phase space at the scission point of the compound nucleus. This new method uses temperature-dependent level densities and its predictions are in good agreement with the presented experimental data, thus consistent with the fusion-fission origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the European Physical Journal A - Hadrons and Nucle

    Structure of 12Be: intruder d-wave strength at N=8

    Get PDF
    The breaking of the N=8 shell-model magic number in the 12Be ground state has been determined to include significant occupancy of the intruder d-wave orbital. This is in marked contrast with all other N=8 isotones, both more and less exotic than 12Be. The occupancies of the 0 hbar omega neutron p1/2-orbital and the 1 hbar omega, neutron d5/2 intruder orbital were deduced from a measurement of neutron removal from a high-energy 12Be beam leading to bound and unbound states in 11Be.Comment: 5 pages, 2 figure

    4He decay of excited states in 14C

    Full text link
    A study of the 7Li(9Be,4He 10Be)2H reaction at E{beam}=70 MeV has been performed using resonant particle spectroscopy techniques and provides the first measurements of alpha-decaying states in 14C. Excited states are observed at 14.7, 15.5, 16.4, 18.5, 19.8, 20.6, 21.4, 22.4 and 24.0 MeV. The experimental technique was able to resolve decays to the various particle bound states in 10Be, and provides evidence for the preferential decay of the high energy excited states into states in 10Be at ~6 MeV. The decay processes are used to indicate the possible cluster structure of the 14C excited states.Comment: accepted for publication in PR

    Highly deformed 40^{40}Ca configurations in 28^{28}Si + 12^{12}C

    Full text link
    The possible occurrence of highly deformed configurations in the 40^{40}Ca di-nuclear system formed in the 28^{28}Si + 12^{12}C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurements of the heavy fragments (A \geq 10) and their associated light charged particles (protons and α\alpha particles) have been made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding energies of Elab(28E_{lab} (^{28}Si) = 112 MeV and 180 MeV by using the {\sc ICARE} charged particle multidetector array. The energy spectra, velocity distributions, and both in-plane and out-of-plane angular correlations of light charged particles are compared to statistical-model calculations using a consistent set of parameters with spin-dependent level densities. The analysis suggests the onset of large nuclear deformation in 40^{40}Ca at high spin.Comment: 33 pages, 11 figure

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published

    Identifying Asthma genetic signature patterns by mining Gene Expression BIG Datasets using Image Filtering Algorithms

    Get PDF
    Asthma is a treatable but incurable chronic inflammatory disease affecting more than 14% of the UAE population. Asthma is still a clinical dilemma as there is no proper clinical definition of asthma, unknown definitive underlying mechanisms, no objective prognostic tool nor bedside noninvasive diagnostic test to predict complication or exacerbation. Big Data in the form of publicly available transcriptomics can be a valuable source to decipher complex diseases like asthma. Such an approach is hindered by technical variations between different studies that may mask the real biological variations and meaningful, robust findings. A large number of datasets of gene expression microarray images need a powerful tool to properly translate the image intensities into truly differential expressed genes between conditioned examined from the noise. Here we used a novel bioinformatic method based on the coefficient of variance to filter nonvariant probes with stringent image analysis processing between asthmatic and healthy to increase the power of identifying accurate signals hidden within the heterogeneous nature of asthma. Our analysis identified important signaling pathways members, namely NFKB and TGFB pathways, to be differentially expressed between severe asthma and healthy controls. Those vital pathways represent potential targets for future asthma treatment and can serve as reliable biomarkers for asthma severity. Proper image analysis for the publicly available microarray transcriptomics data increased its usefulness to decipher asthma and identify genuine differentially expressed genes that can be validated across different datasets

    Editorial: Biomarkers in Pulmonary Diseases

    Get PDF
    corecore