7,509 research outputs found
Interference fringes with maximal contrast at finite coherence time
Interference fringes can result from the measurement of four-time fourth-order correlation functions of a wave field. These fringes have a statistical origin and, as a consequence, they show the greatest contrast when the coherence time of the field is finite. A simple acoustic experiment is presented in which these fringes are observed, and it is demonstrated that the contrast is maximal for partial coherence. Random telegraph phase noise is used to vary the field coherence in order to highlight the problem of interpreting this interference; for this noise, the Gaussian moment theorem may not be invoked to reduce the description of the interference to one in terms of first-order interference.M.W. Hamilto
Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case
The objective of this paper is to show how the recently proposed method by
Giusti, Heintz, Morais, Morgenstern, Pardo \cite{gihemorpar} can be applied to
a case of real polynomial equation solving. Our main result concerns the
problem of finding one representative point for each connected component of a
real bounded smooth hypersurface. The algorithm in \cite{gihemorpar} yields a
method for symbolically solving a zero-dimensional polynomial equation system
in the affine (and toric) case. Its main feature is the use of adapted data
structure: Arithmetical networks and straight-line programs. The algorithm
solves any affine zero-dimensional equation system in non-uniform sequential
time that is polynomial in the length of the input description and an
adequately defined {\em affine degree} of the equation system. Replacing the
affine degree of the equation system by a suitably defined {\em real degree} of
certain polar varieties associated to the input equation, which describes the
hypersurface under consideration, and using straight-line program codification
of the input and intermediate results, we obtain a method for the problem
introduced above that is polynomial in the input length and the real degree.Comment: Late
BDDC and FETI-DP under Minimalist Assumptions
The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary
simple abstract form. It is shown that their properties can be obtained from
only on a very small set of algebraic assumptions. The presentation is purely
algebraic and it does not use any particular definition of method components,
such as substructures and coarse degrees of freedom. It is then shown that
P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC
preconditioned operators are of the same algebraic form, and the standard
condition number bound carries over to arbitrary abstract operators of this
form. The equality of eigenvalues of BDDC and FETI-DP also holds in the
minimalist abstract setting. The abstract framework is explained on a standard
substructuring example.Comment: 11 pages, 1 figure, also available at
http://www-math.cudenver.edu/ccm/reports
Signal-to-noise ratio of Gaussian-state ghost imaging
The signal-to-noise ratios (SNRs) of three Gaussian-state ghost imaging
configurations--distinguished by the nature of their light sources--are
derived. Two use classical-state light, specifically a joint signal-reference
field state that has either the maximum phase-insensitive or the maximum
phase-sensitive cross correlation consistent with having a proper
representation. The third uses nonclassical light, in particular an entangled
signal-reference field state with the maximum phase-sensitive cross correlation
permitted by quantum mechanics. Analytic SNR expressions are developed for the
near-field and far-field regimes, within which simple asymptotic approximations
are presented for low-brightness and high-brightness sources. A high-brightness
thermal-state (classical phase-insensitive state) source will typically achieve
a higher SNR than a biphoton-state (low-brightness, low-flux limit of the
entangled-state) source, when all other system parameters are equal for the two
systems. With high efficiency photon-number resolving detectors, a
low-brightness, high-flux entangled-state source may achieve a higher SNR than
that obtained with a high-brightness thermal-state source.Comment: 12 pages, 4 figures. This version incorporates additional references
and a new analysis of the nonclassical case that, for the first time,
includes the complete transition to the classical signal-to-noise ratio
asymptote at high source brightnes
Evaluation of WRF-Sfire Performance with Field Observations from the FireFlux experiment
This study uses in-situ measurements collected during the FireFlux field
experiment to evaluate and improve the performance of coupled atmosphere-fire
model WRF-Sfire. The simulation by WRF-Sfire of the experimental burn shows
that WRF-Sfire is capable of providing realistic head fire rate-of-spread and
the vertical temperature structure of the fire plume, and, up to 10 m above
ground level, fire-induced surface flow and vertical velocities within the
plume. The model captured the changes in wind speed and direction before,
during, and after fire front passage, along with arrival times of wind speed,
temperature, and updraft maximae, at the two instrumented flux towers used in
FireFlux. The model overestimated vertical velocities and underestimated
horizontal wind speeds measured at tower heights above the 10 m, and it is
hypothesized that the limited model resolution over estimated the fire front
depth, leading to too high a heat release and, subsequently, too strong an
updraft. However, on the whole, WRF-Sfire fire plume behavior is consistent
with the interpretation of FireFlux observations. The study suggests optimal
experimental pre-planning, design, and execution of future field campaigns that
are needed for further coupled atmosphere-fire model development and
evaluation
Feelings of dual-insecurity among European workers: A multi-level analysis
This article analyses European Social Survey data for 22 countries. We assess the relationship between feelings of employment and income insecurity (dual-insecurity) among workers and national flexicurity policies in the areas of lifelong learning, active labour market policy, modern social security systems and flexible and reliable contractual arrangements. We find that dual-insecurity feelings are lower in countries that score better on most flexicurity polices, but these effects are in all cases outweighed by levels of GDP per capita. Thus feelings of insecurity are reduced more by the affluence of a country than by its social policies. However, affluence is strongly correlated with the policy efforts designed to reduce insecurity, especially active labour market policies and life-long learning, two policy areas that are threatened with cuts as a result of austerity
Evidence for Grain Growth in Molecular Clouds: A Bayesian Examination of the Extinction Law in Perseus
We investigate the shape of the extinction law in two 1-degree square fields
of the Perseus Molecular Cloud complex. We combine deep red-optical (r, i, and
z-band) observations obtained using Megacam on the MMT with UKIDSS
near-infrared (J, H, and K-band) data to measure the colours of background
stars. We develop a new hierarchical Bayesian statistical model, including
measurement error, intrinsic colour variation, spectral type, and dust
reddening, to simultaneously infer parameters for individual stars and
characteristics of the population. We implement an efficient MCMC algorithm
utilising generalised Gibbs sampling to compute coherent probabilistic
inferences. We find a strong correlation between the extinction (Av) and the
slope of the extinction law (parameterized by Rv). Because the majority of the
extinction toward our stars comes from the Perseus molecular cloud, we
interpret this correlation as evidence of grain growth at moderate optical
depths. The extinction law changes from the diffuse value of Rv = 3 to the
dense cloud value of Rv = 5 as the column density rises from Av = 2 mags to Av
= 10 mags. This relationship is similar for the two regions in our study,
despite their different physical conditions, suggesting that dust grain growth
is a fairly universal process.Comment: Accepted for publication by MNRAS. 18 pages, 11 figure
Effect of chromatic dispersion induced chirp on the temporal coherence property of individual beam from spontaneous four wave mixing
Temporal coherence of individual signal or idler beam, determined by the
spectral correlation property of photon pairs, is important for realizing
quantum interference among independent sources. To understand the effect of
chirp on the temporal coherence property, two series of experiments are
investigated by introducing different amount of chirp into either the pulsed
pump or individual signal (idler) beam. In the first one, based on spontaneous
four wave mixing in a piece of optical fiber, the intensity correlation
function of the filtered individual signal beam, which characterizes the degree
of temporal coherence, is measured as a function of the chirp of pump. The
results demonstrate that the chirp of pump pulses decreases the degree of
temporal coherence. In the second one, a Hong-Ou-Mandel type two-photon
interference experiment with the signal beams generated in two different fibers
is carried out. The results illustrate that the chirp of individual beam does
not change the temporal coherence degree, but affect the temporal mode
matching. To achieve high visibility, apart from improving the coherence degree
by minimizing the chirp of pump, mode matching should be optimized by managing
the chirps of individual beams.Comment: 17pages, 4figure
- …
