2,416 research outputs found
Completeness of non-normalizable modes
We establish the completeness of some characteristic sets of non-normalizable
modes by constructing fully localized square steps out of them, with each such
construction expressly displaying the Gibbs phenomenon associated with trying
to use a complete basis of modes to fit functions with discontinuous edges. As
well as being of interest in and of itself, our study is also of interest to
the recently introduced large extra dimension brane-localized gravity program
of Randall and Sundrum, since the particular non-normalizable mode bases that
we consider (specifically the irregular Bessel functions and the associated
Legendre functions of the second kind) are associated with the tensor
gravitational fluctuations which occur in those specific brane worlds in which
the embedding of a maximally four-symmetric brane in a five-dimensional anti-de
Sitter bulk leads to a warp factor which is divergent. Since the brane-world
massless four-dimensional graviton has a divergent wave function in these
particular cases, its resulting lack of normalizability is thus not seen to be
any impediment to its belonging to a complete basis of modes, and consequently
its lack of normalizability should not be seen as a criterion for not including
it in the spectrum of observable modes. Moreover, because the divergent modes
we consider form complete bases, we can even construct propagators out of them
in which these modes appear as poles with residues which are expressly finite.
Thus even though normalizable modes appear in propagators with residues which
are given as their finite normalization constants, non-normalizable modes can
just as equally appear in propagators with finite residues too -- it is just
that such residues will not be associated with bilinear integrals of the modes.Comment: 34 pages, 6 figures. Revte
Implications of Cosmic Repulsion for Gravitational Theory
In this paper we present a general, model independent analysis of a recently
detected apparent cosmic repulsion, and discuss its potential implications for
gravitational theory. In particular, we show that a negatively spatially curved
universe acts like a diverging refractive medium, to thus naturally cause
galaxies to accelerate away from each other. Additionally, we show that it is
possible for a cosmic acceleration to only be temporary, with some accelerating
universes actually being able to subsequently recontract.Comment: RevTeX, 13 page
Open Questions in Classical Gravity
We discuss some outstanding open questions regarding the validity and
uniqueness of the standard second order Newton-Einstein classical gravitational
theory. On the observational side we discuss the degree to which the realm of
validity of Newton's Law of Gravity can actually be extended to distances much
larger than the solar system distance scales on which the law was originally
established. On the theoretical side we identify some commonly accepted but
actually still open to question assumptions which go into the formulating of
the standard second order Einstein theory in the first place. In particular, we
show that while the familiar second order Poisson gravitational equation (and
accordingly its second order covariant Einstein generalization) may be
sufficient to yield Newton's Law of Gravity they are not in fact necessary. The
standard theory thus still awaits the identification of some principle which
would then make it necessary too. We show that current observational
information does not exclusively mandate the standard theory, and that the
conformal invariant fourth order theory of gravity considered recently by
Mannheim and Kazanas is also able to meet the constraints of data, and in fact
to do so without the need for any so far unobserved non-luminous or dark
matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send
requests to [email protected]). To appear in a special issue of
Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of
his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing
Company, N.Y., Fall 199
Broadband study of blazar 1ES 1959+650 during flaring state in 2016
Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in
flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS
collaborations. We studied the spectral energy distributions (SEDs) in
different states of the flare during MJD 57530 - 57589 using simultaneous
multiwaveband data to understand the possible broadband emission scenario
during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT
respectively on board Swift and high energy -ray data from Fermi-LAT
are used to generate multiwaveband lightcurves as well as to obtain high flux
states and quiescent state SEDs. The correlation and lag between different
energy bands is quantified using discrete correlation function. The synchrotron
self Compton (SSC) model was used to reproduce the observed SEDs during flaring
and quiescent states of the source. Results : A decent correlation is seen
between X-ray and high energy -ray fluxes. The spectral hardening with
increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in
-ray band indicates the different emission regions for 0.1 - 3 GeV and
3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed
broadband SEDs. The inner zone is mainly responsible for producing synchrotron
peak and high energy -ray part of the SED in all states. The second
zone is mainly required to produce less variable optical/UV and low energy
-ray emission. Conclusions : Conventional single zone SSC model does
not satisfactorily explain broadband emission during observation period
considered. There is an indication of two emission zones in the jet which are
responsible for producing broadband emission from optical to high energy
-rays.Comment: 11 pages, 12 figures, Accepted in A&
Coherent Neutrino Interactions in a Dense Medium
Motivated by the effect of matter on neutrino oscillations (the MSW effect)
we study in more detail the propagation of neutrinos in a dense medium. The
dispersion relation for massive neutrinos in a medium is known to have a
minimum at nonzero momentum p \sim (G_F\rho)/\sqrt{2}. We study in detail the
origin and consequences of this dispersion relation for both Dirac and Majorana
neutrinos both in a toy model with only neutral currents and a single neutrino
flavour and in a realistic "Standard Model" with two neutrino flavours. We find
that for a range of neutrino momenta near the minimum of the dispersion
relation, Dirac neutrinos are trapped by their coherent interactions with the
medium. This effect does not lead to the trapping of Majorana neutrinos.Comment: 28 pages, 6 figures, Latex; minor changes, one reference added;
version to appear in Phys. Rev.
Multi-frequency, Multi-Epoch Study of Mrk 501: Hints for a two-component nature of the emission
Since the detection of very high energy (VHE) -rays from Mrk 501, its
broad band emission of radiation was mostly and quite effectively modeled using
one zone emission scenario. However, broadband spectral and flux variability
studies enabled by the multiwavelength campaigns carried out during the recent
years have revealed rather complex behavior of Mrk 501. The observed emission
from Mrk 501 could be due to a complex superposition of multiple emission
zones. Moreover new evidences of detection of very hard intrinsic -ray
spectra obtained from {\it Fermi}--LAT observations have challenged the
theories about origin of VHE -rays. Our studies based on {\it
Fermi}--LAT data indicate the existence of two separate components in the
spectrum, one for low energy -rays and the other for high energy
-rays. Using multiwaveband data from several ground and space based
instruments, in addition to HAGAR data, the spectral energy distribution of
Mrk~501 is obtained for various flux states observed during 2011. In the
present work, this observed broadband spectral energy distribution is
reproduced with a leptonic, multi-zone Synchrotron Self-Compton model.Comment: Published in Astrophysical Journal (ApJ
A possible origin of superconducting currents in cosmic strings
The scattering and capture of right-handed neutrinos by an Abelian cosmic
string in the SO(10) grand unification model are considered. The scattering
cross-section of neutrinos per unit length due to the interaction with the
gauge and Higgs fields of the string is much larger in its scaling regime than
in the friction one because of the larger infrared cutoff of the former.The
probability of capture in a zero mode of the string accompanied by the emission
of a gauge or Higgs boson shows a resonant peak for neutrino momentum of the
order of its mass. Considering the decrease of number of strings per unit
comoving volume in the scaling epoch the cosmological consequences of the
superconducting strings formed in this regime will be much smaller than those
which could be produced already in the friction one.Comment: 14 pages Latex, 4 figues/ep
On the consistency of a repulsive gravity phase in the early Universe
We exploit the possibility of existence of a repulsive gravity phase in the
evolution of the Universe. A toy model with a free scalar field minimally
coupled to gravity, but with the "wrong sign" for the energy and negative
curvature for the spatial section, is studied in detail. The background
solutions display a bouncing, non-singular Universe. The model is well-behaved
with respect to tensor perturbations. But, it exhibits growing models with
respect to scalar perturbations whose maximum occurs in the bouncing. Hence,
large inhomogeneties are produced. At least for this case, a repulsive phase
may destroy homogeneity, and in this sense it may be unstable. A newtonian
analogous model is worked out; it displays qualitatively the same behaviour.
The generality of this result is discussed. In particular, it is shown that the
addition of an attractive radiative fluid does not change essentially the
results. We discuss also a quantum version of the classical repulsive phase,
through the Wheeler-de Witt equation in mini-superspace, and we show that it
displays essentially the same scenario as the corresponding attractive phase.Comment: Latex file, 15 pages, 7 figures. There is a new figure, a new section
and some other minor correction
Constraints on Embeddings
We show that the embedding of either a static or a time dependent maximally
3-symmetric brane with non-zero spatial curvature into a non-compactified
bulk does not yield exponential suppression of the geometry away from
the brane. Implications of this result for brane-localized gravity are
discussed.Comment: RevTeX, 9 pages (updated version v2, conclusions unchanged after
extension to the non-static case
On the cosmic ray bound for models of extragalactic neutrino production
We obtain the maximum diffuse neutrino intensity predicted by hadronic
photoproduction models of the type which have been applied to the jets of
active galactic nuclei or gamma ray bursts. For this, we compare the proton and
gamma ray fluxes associated with hadronic photoproduction in extragalactic
neutrino sources with the present experimental upper limit on cosmic ray
protons and the extragalactic gamma ray background, employing a transport
calculation of energetic protons traversing cosmic photon backgrounds. We take
into account the effects of the photon spectral shape in the sources on the
photoproduction process, cosmological source evolution, the optical depth for
cosmic ray ejection, and discuss the possible effects of magnetic fields in the
vicinity of the sources. For photohadronic neutrino sources which are optically
thin to the emission of neutrons we find that the cosmic ray flux imposes a
stronger bound than the extragalactic gamma ray background in the energy range
between 10^5 GeV and 10^11 GeV, as previously noted by Waxman & Bahcall (1999).
We also determine the maximum contribution from the jets of active galactic
nuclei, using constraints set to their neutron opacity by gamma-ray
observations. This present upper limit is consistent with the jets of active
galactic nuclei producing the extragalactic gamma ray background hadronically,
but we point out future observations in the GeV-to-TeV regime could lower this
limit. We also briefly discuss the contribution of gamma ray bursts to
ultra-high energy cosmic rays as it can be inferred from possible observations
or limits on their correlated neutrino fluxes.Comment: 16 pages, includes 7 figures, using REVtex3.1, accepted for
publication in Phys.Rev.D after minor revision
- …
