93 research outputs found
Two-photon double ionization of neon using an intense attosecond pulse train
We present the first demonstration of two-photon double ionization of neon
using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a
photon energy regime where both direct and sequential mechanisms are allowed.
For an APT generated through high-order harmonic generation (HHG) in argon we
achieve a total pulse energy close to 1 J, a central energy of 35 eV and a
total bandwidth of eV. The APT is focused by broadband optics in a
neon gas target to an intensity of Wcm. By tuning
the photon energy across the threshold for the sequential process the double
ionization signal can be turned on and off, indicating that the two-photon
double ionization predominantly occurs through a sequential process. The
demonstrated performance opens up possibilities for future XUV-XUV pump-probe
experiments with attosecond temporal resolution in a photon energy range where
it is possible to unravel the dynamics behind direct vs. sequential double
ionization and the associated electron correlation effects
Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser
Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å−1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å−1, and a system response function of 150 fs
Recommended from our members
Interference in strong-field ionization of a two-centre atomic system
Strong-field photoionization of argon dimers by a few-cycle laser pulse is investigated using electron-ion coincidence momentum spectroscopy. The momentum distribution of the photoelectrons exhibits interference due to the emission from the two atomic argon centres, in analogy with a Young's doubleslit experiment. However, a simulation of the dimer photoelectron momentum spectrum based on the atomic spectrum supplemented with a theoretically derived interference term leads to distinct deviations from the experimental result. The deviations may have their origin in a complex electron dynamics during strong-field ionization of the Ar2 dimer. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy
The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.</p
Characterizing the multi-dimensional reaction dynamics of dihalomethanes using XUV-induced Coulomb explosion imaging
Site-selective probing of iodine 4d orbitals at 13.1 nm was used to characterize the photolysis of CH2I2 and CH2BrI initiated at 202.5 nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2I2, the structural evolution of the neutral molecule was simultaneously characterized along the C-I and I-C-I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom
Suppression of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens
The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e–e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from −20 to −1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 μm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field −21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments
Near threshold two photon double ionization of Kr in the vacuum ultraviolet
We report angle resolved measurements on photoelectrons emitted upon near threshold two photon double ionization TPDI of Kr irradiated by free electron laser FEL pulses. These photoelectron angular distributions PADs are compared with the results of semirelativistic R matrix calculations. As reported by Augustin et al., it is found that the presence of autoionizing resonances within the bandwidth of the exciting FEL pulse strongly influences the PADs. In contrast to measurements on lower Z targets such as Ne and Ar, the larger spin orbit interaction, inherent in 4p subshell hole states of Kr, permits us to resolve and study PADs associated with some of the fine structure components of the Kr and Kr2 ion
CAMP at FLASH An End Station for Imaging, Electron and Ion Spectroscopy, and Pump Probe Experiments at the FLASH Free Electron Laser
The non monochromatic beamline BL1 at the FLASH free electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end station, CAMP, was installed. This multi purpose instrument is optimized for electron and ion spectroscopy, imaging and pump probe experiments at free electron lasers. It can be equipped with various electronand ion spectrometers, along with large area single photon counting pnCCD X ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end station are presented, as well as results from its commissionin
Ultrafast ionization and fragmentation dynamics of polycyclic atomatic hydro-carbons by XUV radiation
In the interstellar medium polycyclic aromatic hydrocarbon molecules (PAH) are exposed to strong ionizing radation leading to complex organic photochemistry. We investigated these ultrafast fragmentation reactions after ionization of the PAHs phenanthrene, fluorene and pyrene at a wavelength of 30.3 nm using pump probe spectroscopy at a free electron laser. We observe double ionization and afterwards hydrogen abstraction and acetylene loss with characteristic time scales for the reaction processes below one hundred femtoseconds.</p
- …
