339 research outputs found
A Agroecologia na Escola Família Agrícola de Itaquiraí, em Mato Grosso do Sul.
bitstream/item/66246/1/31208.pdfOrganizado por: Alberto Feiden, Milton Parron Padovan, Adalgiza Inês Campolim, Aurélio Vinícius Borsato, Ivo de Sá Motta, João Batista Catto, Tércio Jacques Fehlauer
Recommended from our members
Risk measures for direct real estate investments with non-normal or unknown return distributions
The volatility of returns is probably the most widely used risk measure for real estate. This is rather surprising since a number of studies have cast doubts on the view that volatility can capture the manifold risks attached to properties and corresponds to the risk attitude of investors. A central issue in this discussion is the statistical properties of real estate returns—in contrast to neoclassical capital market theory they are mostly non-normal and often unknown, which render many statistical measures useless. Based on a literature review and an analysis of data from Germany we provide evidence that volatility alone is inappropriate for measuring the risk of direct real estate.
We use a unique data sample by IPD, which includes the total returns of 939 properties across different usage types (56% office, 20% retail, 8% others and 16% residential properties) from 1996 to 2009, the German IPD Index, and the German Property Index. The analysis of the distributional characteristics shows that German real estate returns in this period were not normally distributed and that a logistic distribution would have been a better fit. This is in line with most of the current literature on this subject and leads to the question which indicators are more appropriate to measure real estate risks. We suggest that a combination of quantitative and qualitative risk measures more adequately captures real estate risks and conforms better with investor attitudes to risk. Furthermore, we present criteria for the purpose of risk classification
In Vivo Evaluation Of Complex Biogenic Silver Nanoparticle And Enoxaparin In Wound Healing
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The burns treatment is difficult, uncomfortable for the patient, and expensive for health system. Due to antimicrobial properties of silver nanoparticles (AgNP), these particles can avoid bacterial infection in wound and accelerate the wound healing. Furthermore, the complexation of AgNP with enoxaparin (low molecular weight heparin) may improve the healing process of lesions due to anti-inflammatory and angiogenic activity of enoxaparin (Enox). The aim of this study was evaluated the activity and toxicity of biogenic AgNP and AgNP complexed with Enox in in vivo burn wound model. AgNP was produced by biosynthesis method using Fusarium oxysporum. AgNP (20-40 nm) exhibited high stability due to protein capping around the particles that was confirmed by TEM, fluorescence spectroscopy, and FTIR. The wound contraction in in vivo model, after 28 days of treatment, was 55, 89, 91, and 95% for control, Enox, AgNP, and AgNP-Enox groups, respectively. No clear toxic effects in the biochemistry and hematological parameters were verified in all treated groups. However, in the AgNP-Enox group, a statistically significant increase in the urea levels was observed indicating increased proteolysis due to inflammation process. The results demonstrated that the complex AgNP-Enox is interesting for wound healing decreasing the time of lesions healing.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
A multiscale approach to simulate vacuum drying of a packed bed of spray-frozen particles
Preservation of biopharmaceuticals by spray freeze-drying is of great interest as it involves gentle drying and can be easily integrated with continuous manufacturing strategies. The drying of packed beds have been extensively studied experimentally, but a detailed mathematical model of such systems is still missing. The intrinsic multiscale nature of the phenomenon, i.e. drying of porous particles randomly stacked in porous beds, poses a number of challenges that previous studies failed to address. The objective of this work is to present the implementation on COMSOL Multiphysics of a new model, describing the drying of packed beds of frozen particles through the concept of a diffused interface. The simulations of a single particle at the micro-scale are used to inform the model of the packed bed at the macro-scale. The specific example of the drying of particles in a vial was used as a case study.
The macroscopic domain, composed of the glass vial and the packed bed, was constructed as a 2D axisymmetric geometry. The Heat transfer in porous media and Transport of diluted species in porous media modules were used to solve the heat and mass transport equations in the packed bed, while only the heat transfer was considered for the glass domain. In the packed bed, the Dusty-Gas Model (DGM) was implemented defining the diffusion and the convection terms in the pre-built transport equations. An additional Species source was added in the bed volume to account for the ice sublimation (or condensation) from the particles. This source term was determined based on the local fluid- and thermo-dynamics conditions and on the sublimation kinetic parameter, vs, which was determined from the simulations at the micro-scale. The sublimation thermal effect was accounted for adding a Heat source to the domain, calculated multiplying the aforementioned mass generation and the latent heat of sublimation. Finally, with the Domain ODEs and DAEs, the sublimation flux was integrated over time to obtain the sublimated ice and the local frozen fraction (S) of the bed. The diffused interface results from the distribution of the frozen fraction in the bed.
At the micro-scale, a single particle was simulated to obtain vs. The particle was divided in two domains, i.e. dried and frozen layer, and the interface motion was determined solving the Stephan problem in the Deformed geometry module. In the dried layer, the vapor mass transport was solved using the Darcy’s law model. The kinetic parameter, vs, was determined integrating the sublimating mass flux over the interface surface and dividing the result by the driving force. Multiple simulations with different particle porosities were performed and the evolution of vs(S) was exported to the macroscopic simulation as interpolation functions.
The results show that this model predicts well the drying behavior of packed beds of frozen particles, distinguishing between scenarios in which either the bed or the particles porosity limits the mass transport, and predicting the development of multiple diffused sublimation fronts, as was theorized in the past
State recognition for ‘contested languages’: a comparative study of Sardinian and Asturian, 1992–2010
While the idea of a named language as a separate and discrete identity is a political and social construct, in the cases of Sardinian and Asturian doubts over their respective ‘languageness’ have real material consequences, particularly in relation to language policy decisions at the state level. The Asturian example highlights how its lack of official status means that it is either ignored or subjected to repeated challenges to its status as a language variety deserving of recognition and support, reflecting how ‘official language’ in the Spanish context is often understood in practice as synonymous with the theoretically broader category of ‘language’. In contrast, the recent state recognition of Sardinian speakers as a linguistic minority in Italy (Law 482/1999) illustrates how legal recognition served to overcome existing obstacles to the implementation of regional language policy measures. At the same time, the limited subsequent effects of this Law, particularly in the sphere of education, are a reminder of the shortcomings of top-down policies which fail to engage with the local language practices and attitudes of the communities of speakers recognized. The contrastive focus of this article thus acknowledges the continued material consequences of top-down language classification, while highlighting its inadequacies as a language policy mechanism which reinforces artificial distinctions between speech varieties and speakers deserving of recognition
Nanomolecular OLED Pixelization Enabling Electroluminescent Metasurfaces
Miniaturization of light-emitting diodes (LEDs) can enable high-resolution
augmented and virtual reality displays and on-chip light sources for
ultra-broadband chiplet communication. However, unlike silicon scaling in
electronic integrated circuits, patterning of inorganic III-V semiconductors in
LEDs considerably compromises device efficiencies at submicrometer scales.
Here, we present the scalable fabrication of nanoscale organic LEDs
(nano-OLEDs), with the highest array density (>84,000 pixels per inch) and the
smallest pixel size (~100 nm) ever reported to date. Direct nanomolecular
patterning of organic semiconductors is realized by self-aligned evaporation
through nanoapertures fabricated on a free-standing silicon nitride film
adhering to the substrate. The average external quantum efficiencies (EQEs)
extracted from a nano-OLED device of more than 4 megapixels reach up to 10%. At
the subwavelength scale, individual pixels act as electroluminescent meta-atoms
forming metasurfaces that directly convert electricity into modulated light.
The diffractive coupling between nano-pixels enables control over the far-field
emission properties, including directionality and polarization. The results
presented here lay the foundation for bright surface light sources of dimension
smaller than the Abbe diffraction limit, offering new technological platforms
for super-resolution imaging, spectroscopy, sensing, and hybrid integrated
photonics
VP30.01: Cell‐free DNA screening for 22q11.2DS by targeted method based on microarray quantitation in the average risk population: results from a single European laboratory
n/
Reovirus exerts potent oncolytic effects in head and neck cancer cell lines that are independent of signalling in the EGFR pathway
Background: reovirus exploits aberrant signalling downstream of Ras to mediate tumor-specific oncolysis. Since ~90% squamous cell carcinomas of the head and neck (SCCHN) over-express EGFR and SCCHN cell lines are sensitive to oncolytic reovirus, we conducted a detailed analysis of the effects of reovirus in 15 head and neck cancer cell lines. Both pre- and post-entry events were studied in an attempt to define biomarkers predictive of sensitivity/resistance to reovirus. In particular, we analysed the role of EGFR/Ras signalling in determining virus-mediated cytotoxicity in SCCHN. Methods: to test whether EGFR pathway activity was predictive of increased sensitivity to reovirus, correlative analyses between reoviral IC50 by MTT assay and EGFR levels by western blot and FACS were conducted. Inhibition or stimulation of EGFR signalling were analysed for their effect on reoviral oncolysis by MTT assay, and viral growth by TCID50 assay. We next analysed the effects of inhibiting signalling downstream of Ras, by specific inhibitors of p38MAPK, PI3-K or MEK, on reoviral killing examined by MTT assay. The role of PKR in reoviral killing was also determined by blockade of PKR using 2-aminopurine and assaying for cell survival by MTT assay. The apoptotic response of SCCHN to reovirus was examined by western blot analysis of caspase 3 cleavage. Results: correlative analyses between reoviral sensitivity and EGFR levels revealed no association. Intermediate sub-viral and core particles showed the same infectivity/cytotoxicity as intact reovirus. Therefore, sensitivity was not determined by cell entry. In 4 cell lines, oncolysis and viral growth were both unaffected by inhibition or stimulation of EGFR signalling. Inhibition of signalling downstream of Ras did not abrogate reoviral oncolysis and, in addition, modulation of PKR using 2-aminopurine did not alter reovirus sensitivity in resistant cell lines. Caspase 3 cleavage was not detected in infected cells and oncolysis was observed in pan-caspase inhibited cells. Conclusions: in summary, reovirus is potently oncolytic in a broad panel of SCCHN cell lines. Attempts to define sensitivity/resistance by analysis of the EGFR/Ras/MAPK pathway have failed to provide a clear predictive biomarker of response. Further analysis of material from in vitro and clinical studies is ongoing in an attempt to shed further light on this issue
Rehabilitative treatment of patients with covid-19 infection: The p.a.r.m.a. evidence based clinical practice protocol
Background: The impact of the SARS-CoV-2 on the National Health System (NHS) required a reorganization of the various levels of care, which also involved the rehabilitation reality. Aim of the work: A clinical practice review of the literature was conducted to provide operational-rehabilitation guidelines adapt-ed to the local reality and to the recent corporate reorganization in the context of the COVID-19 emergency. Methods: A practice review of the available scientific evidence was regularly conducted from the start of the COVID-19 pandemic to periodically update the clinical practice guidelines. Articles that met the following inclusion criteria were included: studies conducted on human adult subjects with COVID-19 infection, un-dergoing rehabilitation in any hospitalization setting. Results: The results of this clinical practice update were periodically discussed with colleagues and collaborators in a multi-professional team, in order to guarantee a good clinical practice protocol, named P.A.R.M.A. Conclusions: The P.A.R.M.A. protocol is the result of a periodic review literature update, which has allowed us to take charge of patients affected by COVID-19 ac-cording to the most up-to-date clinical evidences, guaranteeing a shared and uniform treatment within a local reality in an era of health emergency. (www.actabiomedica.it)
- …
