467 research outputs found
What is the length of a knot in a polymer?
We give statistical definitions of the length, l, of a loose prime knot tied
into a long, fluctuating ring macromolecule. Monte Carlo results for the
equilibrium, good solvent regime show that ~ N^t, where N is the ring
length and t ~ 0.75 is independent of the knot topology. In the collapsed
regime below the theta temperature, length determinations based on the entropic
competition of different knots within the same ring show delocalization (t~1).Comment: 9 pages, 5 Postscript figure
A scale-free network hidden in the collapsing polymer
We show that the collapsed globular phase of a polymer accommodates a
scale-free incompatibility graph of its contacts. The degree distribution of
this network is found to decay with the exponent up to a
cut-off degree , where is the loop exponent for dense
polymers ( in two dimensions) and is the length of the polymer. Our
results exemplify how a scale-free network (SFN) can emerge from standard
criticality.Comment: 4 pages, 3 figures, address correcte
Average Structures of a Single Knotted Ring Polymer
Two types of average structures of a single knotted ring polymer are studied
by Brownian dynamics simulations. For a ring polymer with N segments, its
structure is represented by a 3N -dimensional conformation vector consisting of
the Cartesian coordinates of the segment positions relative to the center of
mass of the ring polymer. The average structure is given by the average
conformation vector, which is self-consistently defined as the average of the
conformation vectors obtained from a simulation each of which is rotated to
minimize its distance from the average conformation vector. From each
conformation vector sampled in a simulation, 2N conformation vectors are
generated by changing the numbering of the segments. Among the 2N conformation
vectors, the one closest to the average conformation vector is used for one
type of the average structure. The other type of the averages structure uses
all the conformation vectors generated from those sampled in a simulation. In
thecase of the former average structure, the knotted part of the average
structure is delocalized for small N and becomes localized as N is increased.
In the case of the latter average structure, the average structure changes from
a double loop structure for small N to a single loop structure for large N,
which indicates the localization-delocalization transition of the knotted part.Comment: 15 pages, 19 figures, uses jpsj2.cl
Diffusion of a ring polymer in good solution via the Brownian dynamics
Diffusion constants D_{R} and D_{L} of ring and linear polymers of the same
molecular weight in a good solvent, respectively, have been evaluated through
the Brownian dynamics with hydrodynamic interaction. The ratio ,
which should be universal in the context of the renormalization group, has been
estimated as for the large-N limit. It should be consistent
with that of synthetic polymers, while it is smaller than that of DNAs such as
. Furthermore, the probability of the ring polymer being a
nontrivial knot is found to be very small, while bond crossings may occur at
almost all time steps in the present simulation that realizes the good solvent
conditions.Comment: 11 pages, 4 figure
Knot localization in adsorbing polymer rings
We study by Monte Carlo simulations a model of knotted polymer ring adsorbing
onto an impenetrable, attractive wall. The polymer is described by a
self-avoiding polygon (SAP) on the cubic lattice. We find that the adsorption
transition temperature, the crossover exponent and the metric exponent
, are the same as in the model where the topology of the ring is
unrestricted. By measuring the average length of the knotted portion of the
ring we are able to show that adsorbed knots are localized. This knot
localization transition is triggered by the adsorption transition but is
accompanied by a less sharp variation of the exponent related to the degree of
localization. Indeed, for a whole interval below the adsorption transition, one
can not exclude a contiuous variation with temperature of this exponent. Deep
into the adsorbed phase we are able to verify that knot localization is strong
and well described in terms of the flat knot model.Comment: 27 pages, 10 figures. Submitter to Phys. Rev.
Impedance measurements and simulations on the TCT and TDI LHC collimators
The LHC collimation system is a critical element for
the safe operation of the LHC machine and it is subject
to continuous performance monitoring, hardware upgrade
and optimization. In this work we will address the impact
on impedance of the upgrades performed on the injection
protection target dump (TDI), where the absorber material
has been changed to mitigate the device heating observed
in machine operation, and on selected secondary (TCS) and
tertiary (TCT) collimators, where beam position monitors
(BPM) have been embedded for faster jaw alignment. Con-
cerning the TDI, we will present the RF measurements per-
formed before and after the upgrade, comparing the result
to heating and tune shift beam measurements. For the TCTs,
we will study how the higher order modes (HOM) intro-
duced by the BPM addition have been cured by means of
ferrite placement in the device. The impedance mitigation
campaign has been supported by RF measurements whose
results are in good agreement with GdfidL and CST simula-
tions. The presence of undamped low frequency modes is
proved not to be detrimental to the safe LHC operation
Diffusion mechanisms of localised knots along a polymer
We consider the diffusive motion of a localized knot along a linear polymer
chain. In particular, we derive the mean diffusion time of the knot before it
escapes from the chain once it gets close to one of the chain ends.
Self-reptation of the entire chain between either end and the knot position,
during which the knot is provided with free volume, leads to an L^3 scaling of
diffusion time; for sufficiently long chains, subdiffusion will enhance this
time even more. Conversely, we propose local ``breathing'', i.e., local
conformational rearrangement inside the knot region (KR) and its immediate
neighbourhood, as additional mechanism. The contribution of KR-breathing to the
diffusion time scales only quadratically, L^2, speeding up the knot escape
considerably and guaranteeing finite knot mobility even for very long chains.Comment: 7 pages, 2 figures. Accepted to Europhys. Let
The geometrical nature of optical resonances : from a sphere to fused dimer nanoparticles
We study the electromagnetic response of smooth gold nanoparticles with shapes varying from a single sphere to two ellipsoids joined smoothly at their vertices. We show that the plasmonic resonance visible in the extinction and absorption cross sections shifts to longer wavelengths and eventually disappears as the mid-plane waist of the composite particle becomes narrower. This process corresponds to an increase of the numbers of internal and scattering modes that are mainly confined to the surface and coupled to the incident field. These modes strongly affect the near field, and therefore are of great importance in surface spectroscopy, but are almost undetectable in the far field
Design of a high power production target for the Beam Dump Facility at CERN
The Beam Dump Facility (BDF) project is a proposed general-purpose facility
at CERN, dedicated to beam dump and fixed target experiments. In its initial
phase, the facility is foreseen to be exploited by the Search for Hidden
Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c
proton beam as well as the highest possible number of protons on target (POT)
each year of operation, in order to search for feebly interacting particles.
The target/dump assembly lies at the heart of the facility, with the aim of
safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam,
while maximizing the production of charmed and beauty mesons. High-Z materials
are required for the target/dump, in order to have the shortest possible
absorber and reduce muon background for the downstream experiment. The high
average power deposited on target (305 kW) creates a challenge for heat
removal. During the BDF facility Comprehensive Design Study (CDS), launched by
CERN in 2016, extensive studies have been carried out in order to define and
assess the target assembly design. These studies are described in the present
contribution, which details the proposed design of the BDF production target,
as well as the material selection process and the optimization of the target
configuration and beam dilution. One of the specific challenges and novelty of
this work is the need to consider new target materials, such as a molybdenum
alloy (TZM) as core absorbing material and Ta2.5W as cladding.
Thermo-structural and fluid dynamics calculations have been performed to
evaluate the reliability of the target and its cooling system under beam
operation. In the framework of the target comprehensive design, a preliminary
mechanical design of the full target assembly has also been carried out,
assessing the feasibility of the whole target system.Comment: 17 pages, 18 figure
On the size of knots in ring polymers
We give two different, statistically consistent definitions of the length l
of a prime knot tied into a polymer ring. In the good solvent regime the
polymer is modelled by a self avoiding polygon of N steps on cubic lattice and
l is the number of steps over which the knot ``spreads'' in a given
configuration. An analysis of extensive Monte Carlo data in equilibrium shows
that the probability distribution of l as a function of N obeys a scaling of
the form p(l,N) ~ l^(-c) f(l/N^D), with c ~ 1.25 and D ~ 1. Both D and c could
be independent of knot type. As a consequence, the knot is weakly localized,
i.e. ~ N^t, with t=2-c ~ 0.75. For a ring with fixed knot type, weak
localization implies the existence of a peculiar characteristic length l^(nu) ~
N^(t nu). In the scaling ~ N^(nu) (nu ~0.58) of the radius of gyration of the
whole ring, this length determines a leading power law correction which is much
stronger than that found in the case of unrestricted topology. The existence of
such correction is confirmed by an analysis of extensive Monte Carlo data for
the radius of gyration. The collapsed regime is studied by introducing in the
model sufficiently strong attractive interactions for nearest neighbor sites
visited by the self-avoiding polygon. In this regime knot length determinations
can be based on the entropic competition between two knotted loops separated by
a slip link. These measurements enable us to conclude that each knot is
delocalized (t ~ 1).Comment: 29 pages, 14 figure
- …
