2,992 research outputs found
Tearing of free-standing graphene
We examine the fracture mechanics of tearing graphene. We present a molecular dynamics simulation of the propagation of cracks in clamped, free-standing graphene as a function of the out-of-plane force. The geometry is motivated by experimental configurations that expose graphene sheets to out-of-plane forces, such as back-gate voltage. We establish the geometry and basic energetics of failure and obtain approximate analytical expressions for critical crack lengths and forces. We also propose a method to obtain graphene's toughness. We observe that the cracks' path and the edge structure produced are dependent on the initial crack length. This work may help avoid the tearing of graphene sheets and aid the production of samples with specific edge structures.CAPESNational Science Foundation DMR 1002428Physic
Transillumination imaging through scattering media by use of photorefractive polymers
We demonstrate the use of a near-infrared-sensitive photorefractive polymer with high efficiency for imaging through scattering media, using an all-optical holographic time gate. Imaging through nine scattering mean free paths is performed at 800 nm with a mode-locked continuous-wave Ti:sapphire laser
Dynamical stability of the crack front line
Dynamical stability of the crack front line that propagates between two
plates is studied numerically using the simple two-dimensional mass-spring
model. It is demonstrated that the straight front line is unstable for low
speed while it becomes stable for high speed. For the uniform model, the
roughness exponent in the slower speed region is fairly constant around 0.4 and
there seems to be a rough-smooth transition at a certain speed. For the
inhomogeneous case with quenched randomness, the transition is gradual.Comment: 14 pages, 7 figure
Necessary and sufficient condition for longitudinal magnetoresistance
Since the Lorentz force is perpendicular to the magnetic field, it should not
affect the motion of a charge along the field. This argument seems to imply
absence of longitudinal magnetoresistance (LMR) which is, however, observed in
many materials and reproduced by standard semiclassical transport theory
applied to particular metals. We derive a necessary and sufficient condition on
the shape of the Fermi surface for non-zero LMR. Although an anisotropic
spectrum is a pre-requisite for LMR, not all types of anisotropy can give rise
to the effect: a spectrum should not be separable in any sense. More precisely,
the combination , where is the radial
component of the momentum in a cylindrical system with the z-axis along the
magnetic field and ) is the radial (tangential) component
of the velocity, should depend on the momentum along the field. For some
lattice types, this condition is satisfied already at the level of
nearest-neighbor hopping; for others, the required non-separabality occurs only
if next-to-nearest-neighbor hopping is taken into account.Comment: 7 pages, 2 figure
Cracks Cleave Crystals
The problem of finding what direction cracks should move is not completely
solved. A commonly accepted way to predict crack directions is by computing the
density of elastic potential energy stored well away from the crack tip, and
finding a direction of crack motion to maximize the consumption of this energy.
I provide here a specific case where this rule fails. The example is of a crack
in a crystal. It fractures along a crystal plane, rather than in the direction
normally predicted to release the most energy. Thus, a correct equation of
motion for brittle cracks must take into account both energy flows that are
described in conventional continuum theories and details of the environment
near the tip that are not.Comment: 6 page
Counterterm Method in Lovelock Theory and Horizonless Solutions in Dimensionally Continued Gravity
In this paper we, first, generalize the quasilocal definition of the stress
energy tensor of Einstein gravity to the case of Lovelock gravity, by
introducing the tensorial form of surface terms that make the action
well-defined. We also introduce the boundary counterterm that removes the
divergences of the action and the conserved quantities of the solutions of
Lovelock gravity with flat boundary at constant and . Second, we obtain
the metric of spacetimes generated by brane sources in dimensionally continued
gravity through the use of Hamiltonian formalism, and show that these solutions
have no curvature singularity and no horizons, but have conic singularity. We
show that these asymptotically AdS spacetimes which contain two fundamental
constants are complete. Finally we compute the conserved quantities of these
solutions through the use of the counterterm method introduced in the first
part of the paper.Comment: 15 pages, references added, typos correcte
Dynamics of a string coupled to gravitational waves II - Perturbations propagate along an infinite Nambu-Goto string
The perturbative modes propagating along an infinite string are investigated
within the framework of the gauge invariant perturbation formalism on a
spacetime containing a self-gravitating straight string with a finite
thickness. These modes are not included in our previous analysis. We
reconstruct the perturbation formalism to discuss these modes and solve the
linearized Einstein equation within the first order with respect to the string
oscillation amplitude. In the thin string case, we show that the oscillations
of an infinite string must involve the propagation of cosmic string traveling
wave.Comment: 4 pages (2 columns), no figure, revtex with multicol.sty. To appear
in Physical Review
Dynamics of a string coupled to gravitational waves - Gravitational wave scattering by a Nambu-Goto straight string
We study the perturbative dynamics of an infinite gravitating Nambu-Goto
string within the general-relativistic perturbation framework. We develop the
gauge invariant metric perturbation on a spacetime containing a
self-gravitating straight string with a finite thickness and solve the
linearized Einstein equation. In the thin string case, we show that the string
does not emit gravitational waves by its free oscillation in the first order
with respect to its oscillation amplitude, nevertheless the string actually
bends when the incidental gravitational waves go through it.Comment: Published in Physical Review D. Some explanations are changed to
clarify our point
Antiferromagnetic coupling of the single-molecule magnet Mn12 to a ferromagnetic substrate
We investigate magnetic coupling between a monolayer of prototype
single-molecule magnets Mn12 and a ferromagnetic Ni(111) substrate through S,
using density-functional theory (DFT) and a DFT+U method. Our DFT and DFT+U
calculations show that the Mn12 molecules favor antiferromagnetic coupling to
the Ni substrate, and that they possess magnetic moments deviated from the
magnetic moments of isolated Mn12 molecules. We find that the magnetic easy
axis of the Mn12 on Ni (whole system) is dictated by that of the Ni substrate.
The antiferromagnetic coupling is, dominantly, caused by superexchange
interactions between the magnetic moments of the Mn and the Ni substrate via
the S, C, and O anions. Our findings can be observed from x-ray magnetic
circular dichroism or scanning tunneling microscopy
- …
