1,776 research outputs found

    Overlap properties of geometric expanders

    Get PDF
    The {\em overlap number} of a finite (d+1)(d+1)-uniform hypergraph HH is defined as the largest constant c(H)(0,1]c(H)\in (0,1] such that no matter how we map the vertices of HH into Rd\R^d, there is a point covered by at least a c(H)c(H)-fraction of the simplices induced by the images of its hyperedges. In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph expansion for higher dimensional simplicial complexes, it was asked whether or not there exists a sequence {Hn}n=1\{H_n\}_{n=1}^\infty of arbitrarily large (d+1)(d+1)-uniform hypergraphs with bounded degree, for which infn1c(Hn)>0\inf_{n\ge 1} c(H_n)>0. Using both random methods and explicit constructions, we answer this question positively by constructing infinite families of (d+1)(d+1)-uniform hypergraphs with bounded degree such that their overlap numbers are bounded from below by a positive constant c=c(d)c=c(d). We also show that, for every dd, the best value of the constant c=c(d)c=c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d+1)(d+1)-uniform hypergraphs with nn vertices, as nn\rightarrow\infty. For the proof of the latter statement, we establish the following geometric partitioning result of independent interest. For any dd and any ϵ>0\epsilon>0, there exists K=K(ϵ,d)d+1K=K(\epsilon,d)\ge d+1 satisfying the following condition. For any kKk\ge K, for any point qRdq \in \mathbb{R}^d and for any finite Borel measure μ\mu on Rd\mathbb{R}^d with respect to which every hyperplane has measure 00, there is a partition Rd=A1Ak\mathbb{R}^d=A_1 \cup \ldots \cup A_{k} into kk measurable parts of equal measure such that all but at most an ϵ\epsilon-fraction of the (d+1)(d+1)-tuples Ai1,,Aid+1A_{i_1},\ldots,A_{i_{d+1}} have the property that either all simplices with one vertex in each AijA_{i_j} contain qq or none of these simplices contain qq

    Majority Dynamics and Aggregation of Information in Social Networks

    Full text link
    Consider n individuals who, by popular vote, choose among q >= 2 alternatives, one of which is "better" than the others. Assume that each individual votes independently at random, and that the probability of voting for the better alternative is larger than the probability of voting for any other. It follows from the law of large numbers that a plurality vote among the n individuals would result in the correct outcome, with probability approaching one exponentially quickly as n tends to infinity. Our interest in this paper is in a variant of the process above where, after forming their initial opinions, the voters update their decisions based on some interaction with their neighbors in a social network. Our main example is "majority dynamics", in which each voter adopts the most popular opinion among its friends. The interaction repeats for some number of rounds and is then followed by a population-wide plurality vote. The question we tackle is that of "efficient aggregation of information": in which cases is the better alternative chosen with probability approaching one as n tends to infinity? Conversely, for which sequences of growing graphs does aggregation fail, so that the wrong alternative gets chosen with probability bounded away from zero? We construct a family of examples in which interaction prevents efficient aggregation of information, and give a condition on the social network which ensures that aggregation occurs. For the case of majority dynamics we also investigate the question of unanimity in the limit. In particular, if the voters' social network is an expander graph, we show that if the initial population is sufficiently biased towards a particular alternative then that alternative will eventually become the unanimous preference of the entire population.Comment: 22 page

    CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483

    Full text link
    CO isotopes are able to probe the different components in protostellar clouds. These components, core, envelope and outflow have distinct physical conditions and sometimes more than one component contributes to the observed line profile. In this study we determine how CO isotope abundances are altered by the physical conditions in the different components. We use a 3D molecular line transport code to simulate the emission of four CO isotopomers, 12CO J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483, which contains a cold quiescent core, an infalling envelope and a clear outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line observations with the inclusion of freeze-out, a density profile and infall. Our model profiles of 12CO and 13CO have a large linewidth due to a high velocity jet. These profiles replicate the process of more abundant material being susceptible to a jet. C18O and C17O do not display such a large linewidth as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    Property (T) and rigidity for actions on Banach spaces

    Full text link
    We study property (T) and the fixed point property for actions on LpL^p and other Banach spaces. We show that property (T) holds when L2L^2 is replaced by LpL^p (and even a subspace/quotient of LpL^p), and that in fact it is independent of 1p<1\leq p<\infty. We show that the fixed point property for LpL^p follows from property (T) when 1. For simple Lie groups and their lattices, we prove that the fixed point property for LpL^p holds for any 1<p<1< p<\infty if and only if the rank is at least two. Finally, we obtain a superrigidity result for actions of irreducible lattices in products of general groups on superreflexive Banach spaces.Comment: Many minor improvement

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    Counting and effective rigidity in algebra and geometry

    Full text link
    The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum determines the commensurability class of the 2-manifold (resp., 3-manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3-manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest.Comment: v.2, 39 pages. To appear in Invent. Mat

    Differential criterion of a bubble collapse in viscous liquids

    Get PDF
    The present work is devoted to a model of bubble collapse in a Newtonian viscous liquid caused by an initial bubble wall motion. The obtained bubble dynamics described by an analytic solution significantly depends on the liquid and bubble parameters. The theory gives two types of bubble behavior: collapse and viscous damping. This results in a general collapse condition proposed as the sufficient differential criterion. The suggested criterion is discussed and successfully applied to the analysis of the void and gas bubble collapses.Comment: 5 pages, 3 figure

    On the distortion of twin building lattices

    Full text link
    We show that twin building lattices are undistorted in their ambient group; equivalently, the orbit map of the lattice to the product of the associated twin buildings is a quasi-isometric embedding. As a consequence, we provide an estimate of the quasi-flat rank of these lattices, which implies that there are infinitely many quasi-isometry classes of finitely presented simple groups. In an appendix, we describe how non-distortion of lattices is related to the integrability of the structural cocycle
    corecore