1,776 research outputs found
Overlap properties of geometric expanders
The {\em overlap number} of a finite -uniform hypergraph is
defined as the largest constant such that no matter how we map
the vertices of into , there is a point covered by at least a
-fraction of the simplices induced by the images of its hyperedges.
In~\cite{Gro2}, motivated by the search for an analogue of the notion of graph
expansion for higher dimensional simplicial complexes, it was asked whether or
not there exists a sequence of arbitrarily large
-uniform hypergraphs with bounded degree, for which . Using both random methods and explicit constructions, we answer this
question positively by constructing infinite families of -uniform
hypergraphs with bounded degree such that their overlap numbers are bounded
from below by a positive constant . We also show that, for every ,
the best value of the constant that can be achieved by such a
construction is asymptotically equal to the limit of the overlap numbers of the
complete -uniform hypergraphs with vertices, as
. For the proof of the latter statement, we establish the
following geometric partitioning result of independent interest. For any
and any , there exists satisfying the
following condition. For any , for any point and
for any finite Borel measure on with respect to which
every hyperplane has measure , there is a partition into measurable parts of equal measure such that all but
at most an -fraction of the -tuples
have the property that either all simplices with
one vertex in each contain or none of these simplices contain
Majority Dynamics and Aggregation of Information in Social Networks
Consider n individuals who, by popular vote, choose among q >= 2
alternatives, one of which is "better" than the others. Assume that each
individual votes independently at random, and that the probability of voting
for the better alternative is larger than the probability of voting for any
other. It follows from the law of large numbers that a plurality vote among the
n individuals would result in the correct outcome, with probability approaching
one exponentially quickly as n tends to infinity. Our interest in this paper is
in a variant of the process above where, after forming their initial opinions,
the voters update their decisions based on some interaction with their
neighbors in a social network. Our main example is "majority dynamics", in
which each voter adopts the most popular opinion among its friends. The
interaction repeats for some number of rounds and is then followed by a
population-wide plurality vote.
The question we tackle is that of "efficient aggregation of information": in
which cases is the better alternative chosen with probability approaching one
as n tends to infinity? Conversely, for which sequences of growing graphs does
aggregation fail, so that the wrong alternative gets chosen with probability
bounded away from zero? We construct a family of examples in which interaction
prevents efficient aggregation of information, and give a condition on the
social network which ensures that aggregation occurs. For the case of majority
dynamics we also investigate the question of unanimity in the limit. In
particular, if the voters' social network is an expander graph, we show that if
the initial population is sufficiently biased towards a particular alternative
then that alternative will eventually become the unanimous preference of the
entire population.Comment: 22 page
CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483
CO isotopes are able to probe the different components in protostellar
clouds. These components, core, envelope and outflow have distinct physical
conditions and sometimes more than one component contributes to the observed
line profile. In this study we determine how CO isotope abundances are altered
by the physical conditions in the different components. We use a 3D molecular
line transport code to simulate the emission of four CO isotopomers, 12CO
J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483,
which contains a cold quiescent core, an infalling envelope and a clear
outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line
observations with the inclusion of freeze-out, a density profile and infall.
Our model profiles of 12CO and 13CO have a large linewidth due to a high
velocity jet. These profiles replicate the process of more abundant material
being susceptible to a jet. C18O and C17O do not display such a large linewidth
as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table
Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that
We report on some recent developments in the search for optimal network
topologies. First we review some basic concepts on spectral graph theory,
including adjacency and Laplacian matrices, and paying special attention to the
topological implications of having large spectral gaps. We also introduce
related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we
discuss two different dynamical feautures of networks: synchronizability and
flow of random walkers and so that they are optimized if the corresponding
Laplacian matrix have a large spectral gap. From this, we show, by developing a
numerical optimization algorithm that maximum synchronizability and fast random
walk spreading are obtained for a particular type of extremely homogeneous
regular networks, with long loops and poor modular structure, that we call
entangled networks. These turn out to be related to Ramanujan and Cage graphs.
We argue also that these graphs are very good finite-size approximations to
Bethe lattices, and provide almost or almost optimal solutions to many other
problems as, for instance, searchability in the presence of congestion or
performance of neural networks. Finally, we study how these results are
modified when studying dynamical processes controlled by a normalized (weighted
and directed) dynamics; much more heterogeneous graphs are optimal in this
case. Finally, a critical discussion of the limitations and possible extensions
of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted
for pub. in JSTA
Property (T) and rigidity for actions on Banach spaces
We study property (T) and the fixed point property for actions on and
other Banach spaces. We show that property (T) holds when is replaced by
(and even a subspace/quotient of ), and that in fact it is
independent of . We show that the fixed point property for
follows from property (T) when 1
. For simple Lie groups and their lattices, we prove that the fixed point property for holds for any if and only if the rank is at least two. Finally, we obtain a superrigidity result for actions of irreducible lattices in products of general groups on superreflexive Banach spaces.Comment: Many minor improvement
Sonoluminescing air bubbles rectify argon
The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the
percentage of inert gas within the bubble. We propose a theory for this
dependence, based on a combination of principles from sonochemistry and
hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent
reaction to water soluble gases implies that strongly forced air bubbles
eventually consist of pure argon. Thus it is the partial argon (or any other
inert gas) pressure which is relevant for stability. The theory provides
quantitative explanations for many aspects of SBSL.Comment: 4 page
Counting and effective rigidity in algebra and geometry
The purpose of this article is to produce effective versions of some rigidity
results in algebra and geometry. On the geometric side, we focus on the
spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic
hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum
determines the commensurability class of the 2-manifold (resp., 3-manifold). We
establish effective versions of these rigidity results by ensuring that, for
two incommensurable arithmetic manifolds of bounded volume, the length sets
(resp., the complex length sets) must disagree for a length that can be
explicitly bounded as a function of volume. We also prove an effective version
of a similar rigidity result established by the second author with Reid on a
surface analog of the length spectrum for hyperbolic 3-manifolds. These
effective results have corresponding algebraic analogs involving maximal
subfields and quaternion subalgebras of quaternion algebras. To prove these
effective rigidity results, we establish results on the asymptotic behavior of
certain algebraic and geometric counting functions which are of independent
interest.Comment: v.2, 39 pages. To appear in Invent. Mat
Differential criterion of a bubble collapse in viscous liquids
The present work is devoted to a model of bubble collapse in a Newtonian
viscous liquid caused by an initial bubble wall motion. The obtained bubble
dynamics described by an analytic solution significantly depends on the liquid
and bubble parameters. The theory gives two types of bubble behavior: collapse
and viscous damping. This results in a general collapse condition proposed as
the sufficient differential criterion. The suggested criterion is discussed and
successfully applied to the analysis of the void and gas bubble collapses.Comment: 5 pages, 3 figure
On the distortion of twin building lattices
We show that twin building lattices are undistorted in their ambient group;
equivalently, the orbit map of the lattice to the product of the associated
twin buildings is a quasi-isometric embedding. As a consequence, we provide an
estimate of the quasi-flat rank of these lattices, which implies that there are
infinitely many quasi-isometry classes of finitely presented simple groups. In
an appendix, we describe how non-distortion of lattices is related to the
integrability of the structural cocycle
- …
