1,891 research outputs found
Retarded long-range potentials for the alkali-metal atoms and a perfectly conducting wall
The retarded long-range potentials for hydrogen and alkali-metal atoms in
their ground states and a perfectly conducting wall are calculated. The
potentials are given over a wide range of atom-wall distances and the validity
of the approximations used is established.Comment: RevTeX, epsf, 11 pages, 2 fig
Szeg\"o kernel asymptotics and Morse inequalities on CR manifolds
We consider an abstract compact orientable Cauchy-Riemann manifold endowed
with a Cauchy-Riemann complex line bundle. We assume that the manifold
satisfies condition Y(q) everywhere. In this paper we obtain a scaling
upper-bound for the Szeg\"o kernel on (0, q)-forms with values in the high
tensor powers of the line bundle. This gives after integration weak Morse
inequalities, analogues of the holomorphic Morse inequalities of Demailly. By a
refined spectral analysis we obtain also strong Morse inequalities which we
apply to the embedding of some convex-concave manifolds.Comment: 40 pages, the constants in Theorems 1.1-1.8 have been modified by a
multiplicative constant 1/2 ; v.2 is a final updat
Spin polarization in a two-dimensional electron gas
We evaluate the charge and longitudinal spin response functions of a
two-dimensional electron gas with interactions in an arbitrary state of
spin polarization, using a structurally self-consistent approach to treat
exchange and correlations. From the results we assess the nature of the
magnetic order in the electronic ground state in zero magnetic field as a
function of electron density. We find that states of partial spin polarization
are thermodynamically unstable at all values of the coupling strength and that
a first-order phase transition occurs with increasing coupling strength from
the magnetically disorderd (paramagnetic) phase to the fully spin-polarized
(ferromagnetic) phase. This behavior is in qualitative agreement with diffusion
Monte Carlo data, although the location of the phase transition is
underestimated in our calculations.Comment: 12 pages, 10 figuer
Disease Knowledge Transfer across Neurodegenerative Diseases
We introduce Disease Knowledge Transfer (DKT), a novel technique for
transferring biomarker information between related neurodegenerative diseases.
DKT infers robust multimodal biomarker trajectories in rare neurodegenerative
diseases even when only limited, unimodal data is available, by transferring
information from larger multimodal datasets from common neurodegenerative
diseases. DKT is a joint-disease generative model of biomarker progressions,
which exploits biomarker relationships that are shared across diseases. Our
proposed method allows, for the first time, the estimation of plausible,
multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare
neurodegenerative disease where only unimodal MRI data is available. For this
we train DKT on a combined dataset containing subjects with two distinct
diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD)
dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior
Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for
which only a limited number of Magnetic Resonance Imaging (MRI) scans are
available. Although validation is challenging due to lack of data in PCA, we
validate DKT on synthetic data and two patient datasets (TADPOLE and PCA
cohorts), showing it can estimate the ground truth parameters in the simulation
and predict unseen biomarkers on the two patient datasets. While we
demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other
forms of related neurodegenerative diseases. Source code for DKT is available
online: https://github.com/mrazvan22/dkt.Comment: accepted at MICCAI 2019, 13 pages, 5 figures, 2 table
Quantum Hall Spherical Systems: the Filling Fraction
Within the newly formulated composite fermion hierarchy the filling fraction
of a spherical quantum Hall system is obtained when it can be expressed as an
odd or even denominator fraction. A plot of as a function
of for a constant number of particles (up to N=10001) exhibits structure
of the fractional quantum Hall effect. It is confirmed that
for all particle-hole conjugate systems, except systems with , and
.Comment: 3 pages, Revtex, 7 PostScript figures, submitted to Phys. Rev. B
Rapid Communicatio
Evaporative cooling of trapped fermionic atoms
We propose an efficient mechanism for the evaporative cooling of trapped
fermions directly into quantum degeneracy. Our idea is based on an electric
field induced elastic interaction between trapped atoms in spin symmetric
states. We discuss some novel general features of fermionic evaporative cooling
and present numerical studies demonstrating the feasibility for the cooling of
alkali metal fermionic species Li, K, and Rb. We also
discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including
the effects of anisotropic interactions.Comment: to be publishe
Calculation of the interspecies s-wave scattering length in an ultracold Na-Rb vapor
We report the calculation of the interspecies scattering length for the
sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the
singlet and triplet ground states of the NaRb
molecule, and calculate the singlet and triplet scattering lengths and
for the isotopomers NaRb and NaRb. Using
these values, we assess the prospects for producing a stable two-species
Bose-Einstein condensate in the Na-Rb system.Comment: v2: report correct units in Table captions, fix error in conclusions
for NaRb TBEC. Otherwise, more concise presentation, typos
fixed. 6 pages, 1 figur
Prospects for p-wave paired BCS states of fermionic atoms
We present theoretical prospects for creating p-wave paired BCS states of
magnetic trapped fermionic atoms. Based on our earlier proposal of using dc
electric fields to control both the strength and anisotropic characteristic of
atom-atom interaction and our recently completed multi-channel atomic collision
calculations we discover that p-wave pairing with K and Rb
in the low field seeking maximum spin polarized state represent excellent
choices for achieving superfluid BCS states; and may be realizable with current
technology in laser cooling, magnetic trapping, and evaporative/sympathetic
cooling, provided the required strong electric field can be applied. We also
comment on the prospects of similar p-wave paired BCS states in Li, and
more generally on creating other types exotic BCS states. Our study will open a
new area in the vigorous pursuit to create a quantum degenerate fermionic atom
vapor.Comment: to be publishe
Noncommutative polynomial maps
Accepté pour publication dans "Journal of Algebra and its applications"; 16 pages.Polynomial maps attached to polynomials of an Ore extension are naturally defi ned. In this setting we show the importance of pseudo-linear transformations and give some applications. In particular, factorizations of polynomials in an Ore extension over a fi nite fi eld F_q[t;S ], where S is the Frobenius automorphism, are translated into factorizations in the usual polynomial ring F_q[x]
Low energy atomic collision with dipole interactions
We apply quantum defect theory to study low energy ground state atomic
collisions including aligned dipole interactions such as those induced by an
electric field. Our results show that coupled even () relative orbital
angular momentum partial wave channels exhibit shape resonance structures while
odd () channels do not. We analyze and interpret these resonances within the
framework of multichannel quantum defect theory (MQDT).Comment: 27 pages, 17 figures, an inadvertent typo correcte
- …
